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Preface

This is a textbook on electricity and magnetism, designed for an undergradu-
ate course at the junior or senior level. It can be covered comfortably in two
semesters, maybe even with room to spare for special topics (AC circuits, nu-
merical methods, plasma physics, transmission lines, antenna theory, etc.) A
one-semester course could reasonably stop after Chapter 7. Unlike quantum me-
chanics or thermal physics (for example), there is a fairly general consensus with
respect to the teaching of electrodynamics; the subjects to be included, and even
their order of presentation, are not particularly controversial, and textbooks differ
mainly in style and tone. My approach is perhaps less formal than most; I think
this makes difficult ideas more interesting and accessible.

For this new edition I have made a large number of small changes, in the in-
terests of clarity and grace. In a few places I have corrected serious errors. I have
added some problems and examples (and removed a few that were not effective).
And I have included more references to the accessible literature (particularly the
American Journal of Physics). I realize, of course, that most readers will not have
the time or inclination to consult these resources, but I think it is worthwhile
anyway, if only to emphasize that electrodynamics, notwithstanding its venerable
age, is very much alive, and intriguing new discoveries are being made all the
time. I hope that occasionally a problem will pique your curiosity, and you will
be inspired to look up the reference—some of them are real gems.

I have maintained three items of unorthodox notation:

• The Cartesian unit vectors are written x̂, ŷ, and ẑ (and, in general, all unit
vectors inherit the letter of the corresponding coordinate).

• The distance from the z axis in cylindrical coordinates is designated by s, to
avoid confusion with r (the distance from the origin, and the radial coordi-
nate in spherical coordinates).

• The script letter r denotes the vector from a source point r′ to the field point r
(see Figure). Some authors prefer the more explicit (r − r′). But this makes
many equations distractingly cumbersome, especially when the unit vector
r̂ is involved. I realize that unwary readers are tempted to interpret r as r—it
certainly makes the integrals easier! Please take note: r ≡ (r − r′), which is
not the same as r. I think it’s good notation, but it does have to be handled
with care.1

1In MS Word, r is “Kaufmann font,” but this is very difficult to install in TeX. TeX users can download
a pretty good facsimile from my web site.xii
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As in previous editions, I distinguish two kinds of problems. Some have a
specific pedagogical purpose, and should be worked immediately after reading
the section to which they pertain; these I have placed at the pertinent point within
the chapter. (In a few cases the solution to a problem is used later in the text;
these are indicated by a bullet (•) in the left margin.) Longer problems, or those
of a more general nature, will be found at the end of each chapter. When I teach
the subject, I assign some of these, and work a few of them in class. Unusually
challenging problems are flagged by an exclamation point (!) in the margin. Many
readers have asked that the answers to problems be provided at the back of the
book; unfortunately, just as many are strenuously opposed. I have compromised,
supplying answers when this seems particularly appropriate. A complete solution
manual is available (to instructors) from the publisher; go to the Pearson web site
to order a copy.

I have benefitted from the comments of many colleagues. I cannot list them
all here, but I would like to thank the following people for especially useful con-
tributions to this edition: Burton Brody (Bard), Catherine Crouch (Swarthmore),
Joel Franklin (Reed), Ted Jacobson (Maryland), Don Koks (Adelaide), Charles
Lane (Berry), Kirk McDonald2 (Princeton), Jim McTavish (Liverpool), Rich
Saenz (Cal Poly), Darrel Schroeter (Reed), Herschel Snodgrass (Lewis and
Clark), and Larry Tankersley (Naval Academy). Practically everything I know
about electrodynamics—certainly about teaching electrodynamics—I owe to
Edward Purcell.

David J. Griffiths

2Kirk’s web site, http://www.hep.princeton.edu/∼mcdonald/examples/, is a fantastic resource, with
clever explanations, nifty problems, and useful references.
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WHAT IS ELECTRODYNAMICS, AND HOW DOES IT FIT INTO THE
GENERAL SCHEME OF PHYSICS?

Four Realms of Mechanics

In the diagram below, I have sketched out the four great realms of mechanics:

Classical Mechanics Quantum Mechanics
(Newton) (Bohr, Heisenberg,

Schrödinger, et al.)

Special Relativity Quantum Field Theory
(Einstein) (Dirac, Pauli, Feynman,

Schwinger, et al.)

Newtonian mechanics is adequate for most purposes in “everyday life,” but for
objects moving at high speeds (near the speed of light) it is incorrect, and must
be replaced by special relativity (introduced by Einstein in 1905); for objects that
are extremely small (near the size of atoms) it fails for different reasons, and is
superseded by quantum mechanics (developed by Bohr, Schrödinger, Heisenberg,
and many others, in the 1920’s, mostly). For objects that are both very fast and
very small (as is common in modern particle physics), a mechanics that com-
bines relativity and quantum principles is in order; this relativistic quantum me-
chanics is known as quantum field theory—it was worked out in the thirties and
forties, but even today it cannot claim to be a completely satisfactory system.
In this book, save for the last chapter, we shall work exclusively in the domain
of classical mechanics, although electrodynamics extends with unique simplic-
ity to the other three realms. (In fact, the theory is in most respects automat-
ically consistent with special relativity, for which it was, historically, the main
stimulus.)

Four Kinds of Forces

Mechanics tells us how a system will behave when subjected to a given force.
There are just four basic forces known (presently) to physics: I list them in the
order of decreasing strength:

xiv
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1. Strong
2. Electromagnetic
3. Weak
4. Gravitational

The brevity of this list may surprise you. Where is friction? Where is the “normal”
force that keeps you from falling through the floor? Where are the chemical forces
that bind molecules together? Where is the force of impact between two colliding
billiard balls? The answer is that all these forces are electromagnetic. Indeed,
it is scarcely an exaggeration to say that we live in an electromagnetic world—
virtually every force we experience in everyday life, with the exception of gravity,
is electromagnetic in origin.

The strong forces, which hold protons and neutrons together in the atomic nu-
cleus, have extremely short range, so we do not “feel” them, in spite of the fact that
they are a hundred times more powerful than electrical forces. The weak forces,
which account for certain kinds of radioactive decay, are also of short range, and
they are far weaker than electromagnetic forces. As for gravity, it is so pitifully
feeble (compared to all of the others) that it is only by virtue of huge mass con-
centrations (like the earth and the sun) that we ever notice it at all. The electrical
repulsion between two electrons is 1042 times as large as their gravitational at-
traction, and if atoms were held together by gravitational (instead of electrical)
forces, a single hydrogen atom would be much larger than the known universe.

Not only are electromagnetic forces overwhelmingly dominant in everyday
life, they are also, at present, the only ones that are completely understood. There
is, of course, a classical theory of gravity (Newton’s law of universal gravitation)
and a relativistic one (Einstein’s general relativity), but no entirely satisfactory
quantum mechanical theory of gravity has been constructed (though many people
are working on it). At the present time there is a very successful (if cumbersome)
theory for the weak interactions, and a strikingly attractive candidate (called chro-
modynamics) for the strong interactions. All these theories draw their inspiration
from electrodynamics; none can claim conclusive experimental verification at this
stage. So electrodynamics, a beautifully complete and successful theory, has be-
come a kind of paradigm for physicists: an ideal model that other theories emulate.

The laws of classical electrodynamics were discovered in bits and pieces by
Franklin, Coulomb, Ampère, Faraday, and others, but the person who completed
the job, and packaged it all in the compact and consistent form it has today, was
James Clerk Maxwell. The theory is now about 150 years old.

The Unification of Physical Theories

In the beginning, electricity and magnetism were entirely separate subjects. The
one dealt with glass rods and cat’s fur, pith balls, batteries, currents, electrolysis,
and lightning; the other with bar magnets, iron filings, compass needles, and the
North Pole. But in 1820 Oersted noticed that an electric current could deflect
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a magnetic compass needle. Soon afterward, Ampère correctly postulated that
all magnetic phenomena are due to electric charges in motion. Then, in 1831,
Faraday discovered that a moving magnet generates an electric current. By the
time Maxwell and Lorentz put the finishing touches on the theory, electricity and
magnetism were inextricably intertwined. They could no longer be regarded as
separate subjects, but rather as two aspects of a single subject: electromagnetism.

Faraday speculated that light, too, is electrical in nature. Maxwell’s theory pro-
vided spectacular justification for this hypothesis, and soon optics—the study
of lenses, mirrors, prisms, interference, and diffraction—was incorporated into
electromagnetism. Hertz, who presented the decisive experimental confirmation
for Maxwell’s theory in 1888, put it this way: “The connection between light
and electricity is now established . . . In every flame, in every luminous parti-
cle, we see an electrical process . . . Thus, the domain of electricity extends over
the whole of nature. It even affects ourselves intimately: we perceive that we
possess . . . an electrical organ—the eye.” By 1900, then, three great branches of
physics–electricity, magnetism, and optics–had merged into a single unified the-
ory. (And it was soon apparent that visible light represents only a tiny “window”
in the vast spectrum of electromagnetic radiation, from radio through microwaves,
infrared and ultraviolet, to x-rays and gamma rays.)

Einstein dreamed of a further unification, which would combine gravity and
electrodynamics, in much the same way as electricity and magnetism had been
combined a century earlier. His unified field theory was not particularly success-
ful, but in recent years the same impulse has spawned a hierarchy of increasingly
ambitious (and speculative) unification schemes, beginning in the 1960s with the
electroweak theory of Glashow, Weinberg, and Salam (which joins the weak and
electromagnetic forces), and culminating in the 1980s with the superstring the-
ory (which, according to its proponents, incorporates all four forces in a single
“theory of everything”). At each step in this hierarchy, the mathematical difficul-
ties mount, and the gap between inspired conjecture and experimental test widens;
nevertheless, it is clear that the unification of forces initiated by electrodynamics
has become a major theme in the progress of physics.

The Field Formulation of Electrodynamics

The fundamental problem a theory of electromagnetism hopes to solve is this: I
hold up a bunch of electric charges here (and maybe shake them around); what
happens to some other charge, over there? The classical solution takes the form
of a field theory: We say that the space around an electric charge is permeated
by electric and magnetic fields (the electromagnetic “odor,” as it were, of the
charge). A second charge, in the presence of these fields, experiences a force; the
fields, then, transmit the influence from one charge to the other—they “mediate”
the interaction.

When a charge undergoes acceleration, a portion of the field “detaches” itself,
in a sense, and travels off at the speed of light, carrying with it energy, momen-
tum, and angular momentum. We call this electromagnetic radiation. Its exis-
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tence invites (if not compels) us to regard the fields as independent dynamical
entities in their own right, every bit as “real” as atoms or baseballs. Our interest
accordingly shifts from the study of forces between charges to the theory of the
fields themselves. But it takes a charge to produce an electromagnetic field, and it
takes another charge to detect one, so we had best begin by reviewing the essential
properties of electric charge.

Electric Charge

1. Charge comes in two varieties, which we call “plus” and “minus,” because
their effects tend to cancel (if you have +q and −q at the same point, electrically
it is the same as having no charge there at all). This may seem too obvious to
warrant comment, but I encourage you to contemplate other possibilities: what if
there were 8 or 10 different species of charge? (In chromodynamics there are, in
fact, three quantities analogous to electric charge, each of which may be positive
or negative.) Or what if the two kinds did not tend to cancel? The extraordinary
fact is that plus and minus charges occur in exactly equal amounts, to fantastic
precision, in bulk matter, so that their effects are almost completely neutralized.
Were it not for this, we would be subjected to enormous forces: a potato would
explode violently if the cancellation were imperfect by as little as one part in 1010.

2. Charge is conserved: it cannot be created or destroyed—what there is now has
always been. (A plus charge can “annihilate” an equal minus charge, but a plus
charge cannot simply disappear by itself—something must pick up that electric
charge.) So the total charge of the universe is fixed for all time. This is called
global conservation of charge. Actually, I can say something much stronger:
Global conservation would allow for a charge to disappear in New York and
instantly reappear in San Francisco (that wouldn’t affect the total), and yet we
know this doesn’t happen. If the charge was in New York and it went to San Fran-
cisco, then it must have passed along some continuous path from one to the other.
This is called local conservation of charge. Later on we’ll see how to formulate a
precise mathematical law expressing local conservation of charge—it’s called the
continuity equation.

3. Charge is quantized. Although nothing in classical electrodynamics requires
that it be so, the fact is that electric charge comes only in discrete lumps—integer
multiples of the basic unit of charge. If we call the charge on the proton +e,
then the electron carries charge −e; the neutron charge zero; the pi mesons +e,
0, and −e; the carbon nucleus +6e; and so on (never 7.392e, or even 1/2e).3

This fundamental unit of charge is extremely small, so for practical purposes it
is usually appropriate to ignore quantization altogether. Water, too, “really” con-
sists of discrete lumps (molecules); yet, if we are dealing with reasonably large

3Actually, protons and neutrons are composed of three quarks, which carry fractional charges (± 2
3 e

and ± 1
3 e). However, free quarks do not appear to exist in nature, and in any event, this does not alter

the fact that charge is quantized; it merely reduces the size of the basic unit.
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quantities of it we can treat it as a continuous fluid. This is in fact much closer to
Maxwell’s own view; he knew nothing of electrons and protons—he must have
pictured charge as a kind of “jelly” that could be divided up into portions of any
size and smeared out at will.

Units

The subject of electrodynamics is plagued by competing systems of units, which
sometimes render it difficult for physicists to communicate with one another. The
problem is far worse than in mechanics, where Neanderthals still speak of pounds
and feet; in mechanics, at least all equations look the same, regardless of the units
used to measure quantities. Newton’s second law remains F = ma, whether it is
feet-pounds-seconds, kilograms-meters-seconds, or whatever. But this is not so in
electromagnetism, where Coulomb’s law may appear variously as

F = q1q2

r2 r̂ (Gaussian), or F = 1

4πε0

q1q2

r2 r̂ (SI), or F = 1

4π

q1q2

r2 r̂ (HL).

Of the systems in common use, the two most popular are Gaussian (cgs) and SI
(mks). Elementary particle theorists favor yet a third system: Heaviside-Lorentz.
Although Gaussian units offer distinct theoretical advantages, most undergradu-
ate instructors seem to prefer SI, I suppose because they incorporate the familiar
household units (volts, amperes, and watts). In this book, therefore, I have used
SI units. Appendix C provides a “dictionary” for converting the main results into
Gaussian units.



C H A P T E R

1 Vector Analysis

1.1 VECTOR ALGEBRA

1.1.1 Vector Operations

If you walk 4 miles due north and then 3 miles due east (Fig. 1.1), you will have
gone a total of 7 miles, but you’re not 7 miles from where you set out—you’re
only 5. We need an arithmetic to describe quantities like this, which evidently do
not add in the ordinary way. The reason they don’t, of course, is that displace-
ments (straight line segments going from one point to another) have direction
as well as magnitude (length), and it is essential to take both into account when
you combine them. Such objects are called vectors: velocity, acceleration, force
and momentum are other examples. By contrast, quantities that have magnitude
but no direction are called scalars: examples include mass, charge, density, and
temperature.

I shall use boldface (A, B, and so on) for vectors and ordinary type for scalars.
The magnitude of a vector A is written |A| or, more simply, A. In diagrams, vec-
tors are denoted by arrows: the length of the arrow is proportional to the magni-
tude of the vector, and the arrowhead indicates its direction. Minus A (−A) is a
vector with the same magnitude as A but of opposite direction (Fig. 1.2). Note that
vectors have magnitude and direction but not location: a displacement of 4 miles
due north from Washington is represented by the same vector as a displacement 4
miles north from Baltimore (neglecting, of course, the curvature of the earth). On
a diagram, therefore, you can slide the arrow around at will, as long as you don’t
change its length or direction.

We define four vector operations: addition and three kinds of multiplication.

3 mi

5 mi
4

mi

FIGURE 1.1

−AA

FIGURE 1.2

1



2 Chapter 1 Vector Analysis

A A

B

B

(A+B) (B+A)

FIGURE 1.3

−B

A(A−B)

FIGURE 1.4

(i) Addition of two vectors. Place the tail of B at the head of A; the sum,
A + B, is the vector from the tail of A to the head of B (Fig. 1.3). (This rule
generalizes the obvious procedure for combining two displacements.) Addition is
commutative:

A + B = B + A;
3 miles east followed by 4 miles north gets you to the same place as 4 miles north
followed by 3 miles east. Addition is also associative:

(A + B) + C = A + (B + C).

To subtract a vector, add its opposite (Fig. 1.4):

A − B = A + (−B).

(ii) Multiplication by a scalar. Multiplication of a vector by a positive scalar
a multiplies the magnitude but leaves the direction unchanged (Fig. 1.5). (If a is
negative, the direction is reversed.) Scalar multiplication is distributive:

a(A + B) = aA + aB.

(iii) Dot product of two vectors. The dot product of two vectors is defined by

A · B ≡ AB cos θ, (1.1)

where θ is the angle they form when placed tail-to-tail (Fig. 1.6). Note that A · B
is itself a scalar (hence the alternative name scalar product). The dot product is
commutative,

A · B = B · A,

and distributive,

A · (B + C) = A · B + A · C. (1.2)

Geometrically, A · B is the product of A times the projection of B along A (or
the product of B times the projection of A along B). If the two vectors are parallel,
then A · B = AB. In particular, for any vector A,

A · A = A2. (1.3)

If A and B are perpendicular, then A · B = 0.
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FIGURE 1.5

B

A

θ

FIGURE 1.6

Example 1.1. Let C = A − B (Fig. 1.7), and calculate the dot product of C with
itself.

Solution

C · C = (A − B) · (A − B) = A · A − A · B − B · A + B · B,

or

C2 = A2 + B2 − 2AB cos θ.

This is the law of cosines.

(iv) Cross product of two vectors. The cross product of two vectors is de-
fined by

A × B ≡ AB sin θ n̂, (1.4)

where n̂ is a unit vector (vector of magnitude 1) pointing perpendicular to the
plane of A and B. (I shall use a hat ( ˆ ) to denote unit vectors.) Of course, there
are two directions perpendicular to any plane: “in” and “out.” The ambiguity is
resolved by the right-hand rule: let your fingers point in the direction of the first
vector and curl around (via the smaller angle) toward the second; then your thumb
indicates the direction of n̂. (In Fig. 1.8, A × B points into the page; B × A points
out of the page.) Note that A × B is itself a vector (hence the alternative name
vector product). The cross product is distributive,

A × (B + C) = (A × B) + (A × C), (1.5)

but not commutative. In fact,

(B × A) = −(A × B). (1.6)
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B

CA

θ
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FIGURE 1.8

Geometrically, |A × B| is the area of the parallelogram generated by A and B
(Fig. 1.8). If two vectors are parallel, their cross product is zero. In particular,

A × A = 0

for any vector A. (Here 0 is the zero vector, with magnitude 0.)

Problem 1.1 Using the definitions in Eqs. 1.1 and 1.4, and appropriate diagrams,
show that the dot product and cross product are distributive,

a) when the three vectors are coplanar;

b) in the general case.!

Problem 1.2 Is the cross product associative?

(A × B) × C ?= A × (B × C).

If so, prove it; if not, provide a counterexample (the simpler the better).

1.1.2 Vector Algebra: Component Form

In the previous section, I defined the four vector operations (addition, scalar mul-
tiplication, dot product, and cross product) in “abstract” form—that is, without
reference to any particular coordinate system. In practice, it is often easier to set
up Cartesian coordinates x, y, z and work with vector components. Let x̂, ŷ, and
ẑ be unit vectors parallel to the x , y, and z axes, respectively (Fig. 1.9(a)). An
arbitrary vector A can be expanded in terms of these basis vectors (Fig. 1.9(b)):

(a)x

x

z

y y

z

(b)x

Ax x

Ayy

Azz

y

z

A

FIGURE 1.9
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A = Ax x̂ + Ay ŷ + Az ẑ.

The numbers Ax , Ay , and Az , are the “components” of A; geometrically, they
are the projections of A along the three coordinate axes (Ax = A · x̂, Ay = A · ŷ,
Az = A · ẑ). We can now reformulate each of the four vector operations as a rule
for manipulating components:

A + B = (Ax x̂ + Ay ŷ + Az ẑ) + (Bx x̂ + By ŷ + Bz ẑ)

= (Ax + Bx )x̂ + (Ay + By)ŷ + (Az + Bz)ẑ. (1.7)

Rule (i): To add vectors, add like components.

aA = (a Ax )x̂ + (a Ay)ŷ + (a Az)ẑ. (1.8)

Rule (ii): To multiply by a scalar, multiply each component.

Because x̂, ŷ, and ẑ are mutually perpendicular unit vectors,

x̂ · x̂ = ŷ · ŷ = ẑ · ẑ = 1; x̂ · ŷ = x̂ · ẑ = ŷ · ẑ = 0. (1.9)

Accordingly,

A · B = (Ax x̂ + Ay ŷ + Az ẑ) · (Bx x̂ + By ŷ + Bz ẑ)

= Ax Bx + Ay By + Az Bz . (1.10)

Rule (iii): To calculate the dot product, multiply like components, and add.
In particular,

A · A = A2
x + A2

y + A2
z ,

so

A =
√

A2
x + A2

y + A2
z . (1.11)

(This is, if you like, the three-dimensional generalization of the Pythagorean
theorem.)

Similarly,1

x̂ × x̂ = ŷ × ŷ = ẑ × ẑ = 0,

x̂ × ŷ = −ŷ × x̂ = ẑ,

ŷ × ẑ = −ẑ × ŷ = x̂,

ẑ × x̂ = −x̂ × ẑ = ŷ. (1.12)

1These signs pertain to a right-handed coordinate system (x-axis out of the page, y-axis to the right,
z-axis up, or any rotated version thereof). In a left-handed system (z-axis down), the signs would be
reversed: x̂ × ŷ = −ẑ, and so on. We shall use right-handed systems exclusively.



6 Chapter 1 Vector Analysis

Therefore,

A × B = (Ax x̂ + Ay ŷ + Az ẑ) × (Bx x̂ + By ŷ + Bz ẑ) (1.13)

= (Ay Bz − Az By)x̂ + (Az Bx − Ax Bz)ŷ + (Ax By − Ay Bx )ẑ.

This cumbersome expression can be written more neatly as a determinant:

A × B =
∣∣∣∣∣∣

x̂ ŷ ẑ
Ax Ay Az

Bx By Bz

∣∣∣∣∣∣ . (1.14)

Rule (iv): To calculate the cross product, form the determinant whose first row
is x̂, ŷ, ẑ, whose second row is A (in component form), and whose third row is B.

Example 1.2. Find the angle between the face diagonals of a cube.

Solution
We might as well use a cube of side 1, and place it as shown in Fig. 1.10, with
one corner at the origin. The face diagonals A and B are

A = 1 x̂ + 0 ŷ + 1 ẑ; B = 0 x̂ + 1 ŷ + 1 ẑ.

z

θ
A

B
(0, 0, 1)

y
(0, 1, 0)

x (1, 0, 0)

FIGURE 1.10

So, in component form,

A · B = 1 · 0 + 0 · 1 + 1 · 1 = 1.

On the other hand, in “abstract” form,

A · B = AB cos θ = √
2
√

2 cos θ = 2 cos θ.

Therefore,

cos θ = 1/2, or θ = 60◦.

Of course, you can get the answer more easily by drawing in a diagonal across
the top of the cube, completing the equilateral triangle. But in cases where the
geometry is not so simple, this device of comparing the abstract and component
forms of the dot product can be a very efficient means of finding angles.
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Problem 1.3 Find the angle between the body diagonals of a cube.

Problem 1.4 Use the cross product to find the components of the unit vector n̂
perpendicular to the shaded plane in Fig. 1.11.

1.1.3 Triple Products

Since the cross product of two vectors is itself a vector, it can be dotted or crossed
with a third vector to form a triple product.

(i) Scalar triple product: A · (B × C). Geometrically, |A · (B × C)| is the
volume of the parallelepiped generated by A, B, and C, since |B × C| is the area
of the base, and |A cos θ | is the altitude (Fig. 1.12). Evidently,

A · (B × C) = B · (C × A) = C · (A × B), (1.15)

for they all correspond to the same figure. Note that “alphabetical” order is
preserved—in view of Eq. 1.6, the “nonalphabetical” triple products,

A · (C × B) = B · (A × C) = C · (B × A),

have the opposite sign. In component form,

A · (B × C) =
∣∣∣∣∣∣

Ax Ay Az

Bx By Bz

Cx Cy Cz

∣∣∣∣∣∣ . (1.16)

Note that the dot and cross can be interchanged:

A · (B × C) = (A × B) · C

(this follows immediately from Eq. 1.15); however, the placement of the parenthe-
ses is critical: (A · B) × C is a meaningless expression—you can’t make a cross
product from a scalar and a vector.

x

y

z

n

1
2

3

FIGURE 1.11

B
C

A
θn

FIGURE 1.12
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(ii) Vector triple product: A × (B × C). The vector triple product can be
simplified by the so-called BAC-CAB rule:

A × (B × C) = B(A · C) − C(A · B). (1.17)

Notice that

(A × B) × C = −C × (A × B) = −A(B · C) + B(A · C)

is an entirely different vector (cross-products are not associative). All higher vec-
tor products can be similarly reduced, often by repeated application of Eq. 1.17,
so it is never necessary for an expression to contain more than one cross product
in any term. For instance,

(A × B) · (C × D) = (A · C)(B · D) − (A · D)(B · C);
A × [B × (C × D)] = B[A · (C × D)] − (A · B)(C × D). (1.18)

Problem 1.5 Prove the BAC-CAB rule by writing out both sides in component
form.

Problem 1.6 Prove that

[A × (B × C)] + [B × (C × A)] + [C × (A × B)] = 0.

Under what conditions does A × (B × C) = (A × B) × C?

1.1.4 Position, Displacement, and Separation Vectors

The location of a point in three dimensions can be described by listing its
Cartesian coordinates (x, y, z). The vector to that point from the origin (O)
is called the position vector (Fig. 1.13):

r ≡ x x̂ + y ŷ + z ẑ. (1.19)

r

y

z

z

yx

x

(x, y, z)

r

O

FIGURE 1.13

r

r

r�

Source point

Field point
O

FIGURE 1.14
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I will reserve the letter r for this purpose, throughout the book. Its magnitude,

r =
√

x2 + y2 + z2, (1.20)

is the distance from the origin, and

r̂ = r
r

= x x̂ + y ŷ + z ẑ√
x2 + y2 + z2

(1.21)

is a unit vector pointing radially outward. The infinitesimal displacement vector,
from (x, y, z) to (x + dx, y + dy, z + dz), is

dl = dx x̂ + dy ŷ + dz ẑ. (1.22)

(We could call this dr, since that’s what it is, but it is useful to have a special
notation for infinitesimal displacements.)

In electrodynamics, one frequently encounters problems involving two
points—typically, a source point, r′, where an electric charge is located, and
a field point, r, at which you are calculating the electric or magnetic field
(Fig. 1.14). It pays to adopt right from the start some short-hand notation for
the separation vector from the source point to the field point. I shall use for this
purpose the script letter r:

r ≡ r − r′. (1.23)

Its magnitude is

r = |r − r′|, (1.24)

and a unit vector in the direction from r′ to r is

r̂ = r
r = r − r′

|r − r′| . (1.25)

In Cartesian coordinates,

r = (x − x ′)x̂ + (y − y′)ŷ + (z − z′)ẑ, (1.26)

r =
√

(x − x ′)2 + (y − y′)2 + (z − z′)2, (1.27)

r̂ = (x − x ′)x̂ + (y − y′)ŷ + (z − z′)ẑ√
(x − x ′)2 + (y − y′)2 + (z − z′)2

(1.28)

(from which you can appreciate the economy of the script-r notation).

Problem 1.7 Find the separation vector r from the source point (2,8,7) to the field
point (4,6,8). Determine its magnitude (r), and construct the unit vector r̂.
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1.1.5 How Vectors Transform2

The definition of a vector as “a quantity with a magnitude and direction” is not
altogether satisfactory: What precisely does “direction” mean? This may seem a
pedantic question, but we shall soon encounter a species of derivative that looks
rather like a vector, and we’ll want to know for sure whether it is one.

You might be inclined to say that a vector is anything that has three components
that combine properly under addition. Well, how about this: We have a barrel of
fruit that contains Nx pears, Ny apples, and Nz bananas. Is N = Nx x̂ + Ny ŷ +
Nz ẑ a vector? It has three components, and when you add another barrel with
Mx pears, My apples, and Mz bananas the result is (Nx + Mx ) pears, (Ny + My)

apples, (Nz + Mz) bananas. So it does add like a vector. Yet it’s obviously not
a vector, in the physicist’s sense of the word, because it doesn’t really have a
direction. What exactly is wrong with it?

The answer is that N does not transform properly when you change coordi-
nates. The coordinate frame we use to describe positions in space is of course
entirely arbitrary, but there is a specific geometrical transformation law for con-
verting vector components from one frame to another. Suppose, for instance, the
x, y, z system is rotated by angle φ, relative to x, y, z, about the common x = x
axes. From Fig. 1.15,

Ay = A cos θ, Az = A sin θ,

while

Ay = A cos θ = A cos(θ − φ) = A(cos θ cos φ + sin θ sin φ)

= cos φ Ay + sin φ Az,

Az = A sin θ = A sin(θ − φ) = A(sin θ cos φ − cos θ sin φ)

= − sin φ Ay + cos φ Az .

y

z

θ φ

A y

z

θ

FIGURE 1.15

2This section can be skipped without loss of continuity.
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We might express this conclusion in matrix notation:

(
Ay

Az

)
=

(
cos φ sin φ

− sin φ cos φ

)(
Ay

Az

)
. (1.29)

More generally, for rotation about an arbitrary axis in three dimensions, the
transformation law takes the form

⎛
⎝ Ax

Ay

Az

⎞
⎠ =

⎛
⎝ Rxx Rxy Rxz

Ryx Ryy Ryz

Rzx Rzy Rzz

⎞
⎠

⎛
⎝ Ax

Ay

Az

⎞
⎠ , (1.30)

or, more compactly,

Ai =
3∑

j=1

Ri j A j , (1.31)

where the index 1 stands for x , 2 for y, and 3 for z. The elements of the ma-
trix R can be ascertained, for a given rotation, by the same sort of trigonometric
arguments as we used for a rotation about the x axis.

Now: Do the components of N transform in this way? Of course not—it doesn’t
matter what coordinates you use to represent positions in space; there are still just
as many apples in the barrel. You can’t convert a pear into a banana by choosing
a different set of axes, but you can turn Ax into Ay . Formally, then, a vector is
any set of three components that transforms in the same manner as a displace-
ment when you change coordinates. As always, displacement is the model for the
behavior of all vectors.3

By the way, a (second-rank) tensor is a quantity with nine components, Txx ,
Txy , Txz , Tyx , . . . , Tzz , which transform with two factors of R:

T xx = Rxx (Rxx Txx + Rxy Txy + Rxz Txz)

+ Rxy(Rxx Tyx + Rxy Tyy + Rxz Tyz)

+ Rxz(Rxx Tzx + Rxy Tzy + Rxz Tzz), . . .

or, more compactly,

T i j =
3∑

k=1

3∑
l=1

Rik R jl Tkl . (1.32)

3If you’re a mathematician you might want to contemplate generalized vector spaces in which the
“axes” have nothing to do with direction and the basis vectors are no longer x̂, ŷ, and ẑ (indeed, there
may be more than three dimensions). This is the subject of linear algebra. But for our purposes all
vectors live in ordinary 3-space (or, in Chapter 12, in 4-dimensional space-time.)
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In general, an nth-rank tensor has n indices and 3n components, and transforms
with n factors of R. In this hierarchy, a vector is a tensor of rank 1, and a scalar is
a tensor of rank zero.4

Problem 1.8

(a) Prove that the two-dimensional rotation matrix (Eq. 1.29) preserves dot prod-
ucts. (That is, show that Ay B y + Az Bz = Ay By + Az Bz .)

(b) What constraints must the elements (Ri j ) of the three-dimensional rotation ma-
trix (Eq. 1.30) satisfy, in order to preserve the length of A (for all vectors A)?

Problem 1.9 Find the transformation matrix R that describes a rotation by 120◦

about an axis from the origin through the point (1, 1, 1). The rotation is clockwise
as you look down the axis toward the origin.

Problem 1.10

(a) How do the components of a vector5 transform under a translation of coordi-
nates (x = x , y = y − a, z = z, Fig. 1.16a)?

(b) How do the components of a vector transform under an inversion of coordinates
(x = −x , y = −y, z = −z, Fig. 1.16b)?

(c) How do the components of a cross product (Eq. 1.13) transform under inver-
sion? [The cross-product of two vectors is properly called a pseudovector be-
cause of this “anomalous” behavior.] Is the cross product of two pseudovectors
a vector, or a pseudovector? Name two pseudovector quantities in classical me-
chanics.

(d) How does the scalar triple product of three vectors transform under inversions?
(Such an object is called a pseudoscalar.)

y

z

x x

z

(a)

ya }

z

(b)

y

x

x

z

y

FIGURE 1.16

4A scalar does not change when you change coordinates. In particular, the components of a vector are
not scalars, but the magnitude is.
5Beware: The vector r (Eq. 1.19) goes from a specific point in space (the origin, O) to the point
P = (x, y, z). Under translations the new origin (Ō) is at a different location, and the arrow from Ō
to P is a completely different vector. The original vector r still goes from O to P , regardless of the
coordinates used to label these points.
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1.2 DIFFERENTIAL CALCULUS

1.2.1 “Ordinary” Derivatives

Suppose we have a function of one variable: f (x). Question: What does the
derivative, d f/dx , do for us? Answer: It tells us how rapidly the function f (x)

varies when we change the argument x by a tiny amount, dx :

d f =
(

d f

dx

)
dx . (1.33)

In words: If we increment x by an infinitesimal amount dx , then f changes
by an amount d f ; the derivative is the proportionality factor. For example, in
Fig. 1.17(a), the function varies slowly with x , and the derivative is correspond-
ingly small. In Fig. 1.17(b), f increases rapidly with x , and the derivative is large,
as you move away from x = 0.

Geometrical Interpretation: The derivative d f/dx is the slope of the graph of
f versus x .

1.2.2 Gradient

Suppose, now, that we have a function of three variables—say, the temperature
T (x, y, z) in this room. (Start out in one corner, and set up a system of axes; then
for each point (x, y, z) in the room, T gives the temperature at that spot.) We want
to generalize the notion of “derivative” to functions like T , which depend not on
one but on three variables.

A derivative is supposed to tell us how fast the function varies, if we move a
little distance. But this time the situation is more complicated, because it depends
on what direction we move: If we go straight up, then the temperature will prob-
ably increase fairly rapidly, but if we move horizontally, it may not change much
at all. In fact, the question “How fast does T vary?” has an infinite number of
answers, one for each direction we might choose to explore.

Fortunately, the problem is not as bad as it looks. A theorem on partial deriva-
tives states that

dT =
(

∂T

∂x

)
dx +

(
∂T

∂y

)
dy +

(
∂T

∂z

)
dz. (1.34)

x

f

(a) x

f

(b)

FIGURE 1.17
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This tells us how T changes when we alter all three variables by the infinites-
imal amounts dx, dy, dz. Notice that we do not require an infinite number of
derivatives—three will suffice: the partial derivatives along each of the three co-
ordinate directions.

Equation 1.34 is reminiscent of a dot product:

dT =
(

∂T

∂x
x̂ + ∂T

∂y
ŷ + ∂T

∂z
ẑ
)

· (dx x̂ + dy ŷ + dz ẑ)

= (∇T ) · (dl), (1.35)

where

∇T ≡ ∂T

∂x
x̂ + ∂T

∂y
ŷ + ∂T

∂z
ẑ (1.36)

is the gradient of T . Note that ∇T is a vector quantity, with three components;
it is the generalized derivative we have been looking for. Equation 1.35 is the
three-dimensional version of Eq. 1.33.

Geometrical Interpretation of the Gradient: Like any vector, the gradient has
magnitude and direction. To determine its geometrical meaning, let’s rewrite the
dot product (Eq. 1.35) using Eq. 1.1:

dT = ∇T · dl = |∇T ||dl| cos θ, (1.37)

where θ is the angle between ∇T and dl. Now, if we fix the magnitude |dl| and
search around in various directions (that is, vary θ ), the maximum change in T
evidentally occurs when θ = 0 (for then cos θ = 1). That is, for a fixed distance
|dl|, dT is greatest when I move in the same direction as ∇T . Thus:

The gradient ∇T points in the direction of maximum increase of the
function T .

Moreover:

The magnitude |∇T | gives the slope (rate of increase) along this
maximal direction.

Imagine you are standing on a hillside. Look all around you, and find the di-
rection of steepest ascent. That is the direction of the gradient. Now measure the
slope in that direction (rise over run). That is the magnitude of the gradient. (Here
the function we’re talking about is the height of the hill, and the coordinates it
depends on are positions—latitude and longitude, say. This function depends on
only two variables, not three, but the geometrical meaning of the gradient is easier
to grasp in two dimensions.) Notice from Eq. 1.37 that the direction of maximum
descent is opposite to the direction of maximum ascent, while at right angles
(θ = 90◦) the slope is zero (the gradient is perpendicular to the contour lines).
You can conceive of surfaces that do not have these properties, but they always
have “kinks” in them, and correspond to nondifferentiable functions.

What would it mean for the gradient to vanish? If ∇T = 0 at (x, y, z),
then dT = 0 for small displacements about the point (x, y, z). This is, then, a
stationary point of the function T (x, y, z). It could be a maximum (a summit),
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a minimum (a valley), a saddle point (a pass), or a “shoulder.” This is analogous
to the situation for functions of one variable, where a vanishing derivative signals
a maximum, a minimum, or an inflection. In particular, if you want to locate the
extrema of a function of three variables, set its gradient equal to zero.

Example 1.3. Find the gradient of r = √
x2 + y2 + z2 (the magnitude of the

position vector).

Solution

∇r = ∂r

∂x
x̂ + ∂r

∂y
ŷ + ∂r

∂z
ẑ

= 1

2

2x√
x2 + y2 + z2

x̂ + 1

2

2y√
x2 + y2 + z2

ŷ + 1

2

2z√
x2 + y2 + z2

ẑ

= x x̂ + y ŷ + z ẑ√
x2 + y2 + z2

= r
r

= r̂.

Does this make sense? Well, it says that the distance from the origin increases
most rapidly in the radial direction, and that its rate of increase in that direction
is 1. . . just what you’d expect.

Problem 1.11 Find the gradients of the following functions:

(a) f (x, y, z) = x2 + y3 + z4.

(b) f (x, y, z) = x2 y3z4.

(c) f (x, y, z) = ex sin(y) ln(z).

Problem 1.12 The height of a certain hill (in feet) is given by

h(x, y) = 10(2xy − 3x2 − 4y2 − 18x + 28y + 12),

where y is the distance (in miles) north, x the distance east of South Hadley.

(a) Where is the top of the hill located?

(b) How high is the hill?

(c) How steep is the slope (in feet per mile) at a point 1 mile north and one mile
east of South Hadley? In what direction is the slope steepest, at that point?

Problem 1.13 Let r be the separation vector from a fixed point (x ′, y′, z′) to the•
point (x, y, z), and let r be its length. Show that

(a) ∇(r2) = 2r.
(b) ∇(1/r) = −r̂/r2.

(c) What is the general formula for ∇(rn)?
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Problem 1.14 Suppose that f is a function of two variables (y and z) only.!
Show that the gradient ∇ f = (∂ f/∂y)ŷ + (∂ f/∂z)ẑ transforms as a vector un-
der rotations, Eq. 1.29. [Hint: (∂ f/∂ y) = (∂ f/∂y)(∂y/∂ y) + (∂ f/∂z)(∂z/∂ y),
and the analogous formula for ∂ f/∂z. We know that y = y cos φ + z sin φ and
z = −y sin φ + z cos φ; “solve” these equations for y and z (as functions of y
and z), and compute the needed derivatives ∂y/∂ y, ∂z/∂ y, etc.]

1.2.3 The Del Operator

The gradient has the formal appearance of a vector, ∇, “multiplying” a scalar T :

∇T =
(

x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
T . (1.38)

(For once, I write the unit vectors to the left, just so no one will think this means
∂ x̂/∂x , and so on—which would be zero, since x̂ is constant.) The term in paren-
theses is called del:

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
. (1.39)

Of course, del is not a vector, in the usual sense. Indeed, it doesn’t mean much
until we provide it with a function to act upon. Furthermore, it does not “multiply”
T ; rather, it is an instruction to differentiate what follows. To be precise, then, we
say that ∇ is a vector operator that acts upon T , not a vector that multiplies T .

With this qualification, though, ∇ mimics the behavior of an ordinary vector in
virtually every way; almost anything that can be done with other vectors can also
be done with ∇, if we merely translate “multiply” by “act upon.” So by all means
take the vector appearance of ∇ seriously: it is a marvelous piece of notational
simplification, as you will appreciate if you ever consult Maxwell’s original work
on electromagnetism, written without the benefit of ∇.

Now, an ordinary vector A can multiply in three ways:

1. By a scalar a : Aa;

2. By a vector B, via the dot product: A · B;

3. By a vector B via the cross product: A × B.

Correspondingly, there are three ways the operator ∇ can act:

1. On a scalar function T : ∇T (the gradient);

2. On a vector function v, via the dot product: ∇ · v (the divergence);

3. On a vector function v, via the cross product: ∇ × v (the curl).
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We have already discussed the gradient. In the following sections we examine the
other two vector derivatives: divergence and curl.

1.2.4 The Divergence

From the definition of ∇ we construct the divergence:

∇ · v =
(

x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
· (vx x̂ + vy ŷ + vz ẑ)

= ∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
. (1.40)

Observe that the divergence of a vector function6 v is itself a scalar ∇ · v.
Geometrical Interpretation: The name divergence is well chosen, for ∇ · v

is a measure of how much the vector v spreads out (diverges) from the point in
question. For example, the vector function in Fig. 1.18a has a large (positive)
divergence (if the arrows pointed in, it would be a negative divergence), the func-
tion in Fig. 1.18b has zero divergence, and the function in Fig. 1.18c again has a
positive divergence. (Please understand that v here is a function—there’s a differ-
ent vector associated with every point in space. In the diagrams, of course, I can
only draw the arrows at a few representative locations.)

Imagine standing at the edge of a pond. Sprinkle some sawdust or pine needles
on the surface. If the material spreads out, then you dropped it at a point of positive
divergence; if it collects together, you dropped it at a point of negative divergence.
(The vector function v in this model is the velocity of the water at the surface—
this is a two-dimensional example, but it helps give one a “feel” for what the
divergence means. A point of positive divergence is a source, or “faucet”; a point
of negative divergence is a sink, or “drain.”)

(b)(a) (c)

FIGURE 1.18

6A vector function v(x, y, z) = vx (x, y, z) x̂ + vy(x, y, z) ŷ + vz(x, y, z) ẑ is really three functions—
one for each component. There’s no such thing as the divergence of a scalar.
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Example 1.4. Suppose the functions in Fig. 1.18 are va = r = x x̂ + y ŷ + z ẑ,
vb = ẑ, and vc = z ẑ. Calculate their divergences.

Solution

∇ · va = ∂

∂x
(x) + ∂

∂y
(y) + ∂

∂z
(z) = 1 + 1 + 1 = 3.

As anticipated, this function has a positive divergence.

∇ · vb = ∂

∂x
(0) + ∂

∂y
(0) + ∂

∂z
(1) = 0 + 0 + 0 = 0,

as expected.

∇ · vc = ∂

∂x
(0) + ∂

∂y
(0) + ∂

∂z
(z) = 0 + 0 + 1 = 1.

Problem 1.15 Calculate the divergence of the following vector functions:

(a) va = x2 x̂ + 3xz2 ŷ − 2xz ẑ.

(b) vb = xy x̂ + 2yz ŷ + 3zx ẑ.

(c) vc = y2 x̂ + (2xy + z2) ŷ + 2yz ẑ.

Problem 1.16 Sketch the vector function•

v = r̂
r 2

,

and compute its divergence. The answer may surprise you. . . can you explain it?

Problem 1.17 In two dimensions, show that the divergence transforms as a scalar!
under rotations. [Hint: Use Eq. 1.29 to determine vy and vz , and the method of
Prob. 1.14 to calculate the derivatives. Your aim is to show that ∂vy/∂ y + ∂vz/∂z =
∂vy/∂y + ∂vz/∂z.]

1.2.5 The Curl

From the definition of ∇ we construct the curl:

∇ × v =
∣∣∣∣∣∣

x̂ ŷ ẑ
∂/∂x ∂/∂y ∂/∂z
vx vy vz

∣∣∣∣∣∣
= x̂

(
∂vz

∂y
− ∂vy

∂z

)
+ ŷ

(
∂vx

∂z
− ∂vz

∂x

)
+ ẑ

(
∂vy

∂x
− ∂vx

∂y

)
. (1.41)
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(a)
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x (b)

y

z

FIGURE 1.19

Notice that the curl of a vector function7 v is, like any cross product, a vector.
Geometrical Interpretation: The name curl is also well chosen, for ∇ × v is

a measure of how much the vector v swirls around the point in question. Thus
the three functions in Fig. 1.18 all have zero curl (as you can easily check for
yourself), whereas the functions in Fig. 1.19 have a substantial curl, pointing in the
z direction, as the natural right-hand rule would suggest. Imagine (again) you are
standing at the edge of a pond. Float a small paddlewheel (a cork with toothpicks
pointing out radially would do); if it starts to rotate, then you placed it at a point
of nonzero curl. A whirlpool would be a region of large curl.

Example 1.5. Suppose the function sketched in Fig. 1.19a is va = −yx̂ + x ŷ,
and that in Fig. 1.19b is vb = x ŷ. Calculate their curls.

Solution

∇ × va =
∣∣∣∣∣∣

x̂ ŷ ẑ
∂/∂x ∂/∂y ∂/∂z
−y x 0

∣∣∣∣∣∣ = 2ẑ,

and

∇ × vb =
∣∣∣∣∣∣

x̂ ŷ ẑ
∂/∂x ∂/∂y ∂/∂z

0 x 0

∣∣∣∣∣∣ = ẑ.

As expected, these curls point in the +z direction. (Incidentally, they both have
zero divergence, as you might guess from the pictures: nothing is “spreading
out”. . . it just “swirls around.”)

7There’s no such thing as the curl of a scalar.



20 Chapter 1 Vector Analysis

Problem 1.18 Calculate the curls of the vector functions in Prob. 1.15.

Problem 1.19 Draw a circle in the xy plane. At a few representative points draw
the vector v tangent to the circle, pointing in the clockwise direction. By comparing
adjacent vectors, determine the sign of ∂vx/∂y and ∂vy/∂x . According to Eq. 1.41,
then, what is the direction of ∇ × v? Explain how this example illustrates the geo-
metrical interpretation of the curl.

Problem 1.20 Construct a vector function that has zero divergence and zero curl
everywhere. (A constant will do the job, of course, but make it something a little
more interesting than that!)

1.2.6 Product Rules

The calculation of ordinary derivatives is facilitated by a number of rules, such as
the sum rule:

d

dx
( f + g) = d f

dx
+ dg

dx
,

the rule for multiplying by a constant:

d

dx
(k f ) = k

d f

dx
,

the product rule:

d

dx
( f g) = f

dg

dx
+ g

d f

dx
,

and the quotient rule:

d

dx

(
f

g

)
=

g
d f

dx
− f

dg

dx
g2

.

Similar relations hold for the vector derivatives. Thus,

∇( f + g) = ∇ f + ∇g, ∇ · (A + B) = (∇ · A) + (∇ · B),

∇ × (A + B) = (∇ × A) + (∇ × B),

and

∇(k f ) = k∇ f, ∇ · (kA) = k(∇ · A), ∇ × (kA) = k(∇ × A),

as you can check for yourself. The product rules are not quite so simple. There
are two ways to construct a scalar as the product of two functions:

f g (product of two scalar functions),

A · B (dot product of two vector functions),
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and two ways to make a vector:

f A (scalar times vector),

A × B (cross product of two vectors).

Accordingly, there are six product rules, two for gradients:

(i) ∇( f g) = f ∇g + g∇ f,

(ii) ∇(A · B) = A × (∇ × B) + B × (∇ × A) + (A · ∇)B + (B · ∇)A,

two for divergences:

(iii) ∇ · ( f A) = f (∇ · A) + A · (∇ f ),

(iv) ∇ · (A × B) = B · (∇ × A) − A · (∇ × B),

and two for curls:

(v) ∇ × ( f A) = f (∇ × A) − A × (∇ f ),

(vi) ∇ × (A × B) = (B · ∇)A − (A · ∇)B + A(∇ · B) − B(∇ · A).

You will be using these product rules so frequently that I have put them inside the
front cover for easy reference. The proofs come straight from the product rule for
ordinary derivatives. For instance,

∇ · ( f A) = ∂

∂x
( f Ax ) + ∂

∂y
( f Ay) + ∂

∂z
( f Az)

=
(

∂ f

∂x
Ax + f

∂ Ax

∂x

)
+

(
∂ f

∂y
Ay + f

∂ Ay

∂y

)
+

(
∂ f

∂z
Az + f

∂ Az

∂z

)

= (∇ f ) · A + f (∇ · A).

It is also possible to formulate three quotient rules:

∇
(

f

g

)
= g∇ f − f ∇g

g2
,

∇ ·
(

A
g

)
= g(∇ · A) − A · (∇g)

g2
,

∇ ×
(

A
g

)
= g(∇ × A) + A × (∇g)

g2
.

However, since these can be obtained quickly from the corresponding product
rules, there is no point in listing them separately.
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Problem 1.21 Prove product rules (i), (iv), and (v).

Problem 1.22

(a) If A and B are two vector functions, what does the expression (A · ∇)B mean?
(That is, what are its x , y, and z components, in terms of the Cartesian compo-
nents of A, B, and ∇?)

(b) Compute (r̂ · ∇)r̂, where r̂ is the unit vector defined in Eq. 1.21.

(c) For the functions in Prob. 1.15, evaluate (va · ∇)vb.

Problem 1.23 (For masochists only.) Prove product rules (ii) and (vi). Refer to
Prob. 1.22 for the definition of (A · ∇)B.

Problem 1.24 Derive the three quotient rules.

Problem 1.25

(a) Check product rule (iv) (by calculating each term separately) for the functions

A = x x̂ + 2y ŷ + 3z ẑ; B = 3y x̂ − 2x ŷ.

(b) Do the same for product rule (ii).

(c) Do the same for rule (vi).

1.2.7 Second Derivatives

The gradient, the divergence, and the curl are the only first derivatives we can
make with ∇; by applying ∇ twice, we can construct five species of second deriva-
tives. The gradient ∇T is a vector, so we can take the divergence and curl of it:

(1) Divergence of gradient: ∇ · (∇T ).

(2) Curl of gradient: ∇ × (∇T ).

The divergence ∇ · v is a scalar—all we can do is take its gradient:

(3) Gradient of divergence: ∇(∇ · v).

The curl ∇ × v is a vector, so we can take its divergence and curl:

(4) Divergence of curl: ∇ · (∇ × v).

(5) Curl of curl: ∇ × (∇ × v).

This exhausts the possibilities, and in fact not all of them give anything new.
Let’s consider them one at a time:

(1) ∇ · (∇T ) =
(

x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
·
(

∂T

∂x
x̂ + ∂T

∂y
ŷ + ∂T

∂z
ẑ
)

= ∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2
. (1.42)
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This object, which we write as ∇2T for short, is called the Laplacian of T ; we
shall be studying it in great detail later on. Notice that the Laplacian of a scalar
T is a scalar. Occasionally, we shall speak of the Laplacian of a vector, ∇2v. By
this we mean a vector quantity whose x-component is the Laplacian of vx , and
so on:8

∇2v ≡ (∇2vx )x̂ + (∇2vy)ŷ + (∇2vz)ẑ. (1.43)

This is nothing more than a convenient extension of the meaning of ∇2.
(2) The curl of a gradient is always zero:

∇ × (∇T ) = 0. (1.44)

This is an important fact, which we shall use repeatedly; you can easily prove it
from the definition of ∇, Eq. 1.39. Beware: You might think Eq. 1.44 is “obvi-
ously” true—isn’t it just (∇ × ∇)T , and isn’t the cross product of any vector (in
this case, ∇) with itself always zero? This reasoning is suggestive, but not quite
conclusive, since ∇ is an operator and does not “multiply” in the usual way. The
proof of Eq. 1.44, in fact, hinges on the equality of cross derivatives:

∂

∂x

(
∂T

∂y

)
= ∂

∂y

(
∂T

∂x

)
. (1.45)

If you think I’m being fussy, test your intuition on this one:

(∇T ) × (∇S).

Is that always zero? (It would be, of course, if you replaced the ∇’s by an ordinary
vector.)

(3) ∇(∇ · v) seldom occurs in physical applications, and it has not been given
any special name of its own—it’s just the gradient of the divergence. Notice
that ∇(∇ · v) is not the same as the Laplacian of a vector: ∇2v = (∇ · ∇)v �=
∇(∇ · v).

(4) The divergence of a curl, like the curl of a gradient, is always zero:

∇ · (∇ × v) = 0. (1.46)

You can prove this for yourself. (Again, there is a fraudulent short-cut proof, using
the vector identity A · (B × C) = (A × B) · C.)

(5) As you can check from the definition of ∇:

∇ × (∇ × v) = ∇(∇ · v) − ∇2v. (1.47)

So curl-of-curl gives nothing new; the first term is just number (3), and the sec-
ond is the Laplacian (of a vector). (In fact, Eq. 1.47 is often used to define the

8In curvilinear coordinates, where the unit vectors themselves depend on position, they too must be
differentiated (see Sect. 1.4.1).
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Laplacian of a vector, in preference to Eq. 1.43, which makes explicit reference
to Cartesian coordinates.)

Really, then, there are just two kinds of second derivatives: the Laplacian
(which is of fundamental importance) and the gradient-of-divergence (which
we seldom encounter). We could go through a similar ritual to work out third
derivatives, but fortunately second derivatives suffice for practically all physical
applications.

A final word on vector differential calculus: It all flows from the operator ∇,
and from taking seriously its vectorial character. Even if you remembered only
the definition of ∇, you could easily reconstruct all the rest.

Problem 1.26 Calculate the Laplacian of the following functions:

(a) Ta = x2 + 2xy + 3z + 4.

(b) Tb = sin x sin y sin z.

(c) Tc = e−5x sin 4y cos 3z.

(d) v = x2 x̂ + 3xz2 ŷ − 2xz ẑ.

Problem 1.27 Prove that the divergence of a curl is always zero. Check it for func-
tion va in Prob. 1.15.

Problem 1.28 Prove that the curl of a gradient is always zero. Check it for function
(b) in Prob. 1.11.

1.3 INTEGRAL CALCULUS

1.3.1 Line, Surface, and Volume Integrals

In electrodynamics, we encounter several different kinds of integrals, among
which the most important are line (or path) integrals, surface integrals (or
flux), and volume integrals.

(a) Line Integrals. A line integral is an expression of the form∫ b

a
v · dl, (1.48)

where v is a vector function, dl is the infinitesimal displacement vector (Eq. 1.22),
and the integral is to be carried out along a prescribed path P from point a to point
b (Fig. 1.20). If the path in question forms a closed loop (that is, if b = a), I shall
put a circle on the integral sign: ∮

v · dl. (1.49)

At each point on the path, we take the dot product of v (evaluated at that point)
with the displacement dl to the next point on the path. To a physicist, the most
familiar example of a line integral is the work done by a force F: W = ∫

F · dl.
Ordinarily, the value of a line integral depends critically on the path taken from

a to b, but there is an important special class of vector functions for which the line
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FIGURE 1.21

integral is independent of path and is determined entirely by the end points. It will
be our business in due course to characterize this special class of vectors. (A force
that has this property is called conservative.)

Example 1.6. Calculate the line integral of the function v = y2 x̂ + 2x(y + 1) ŷ
from the point a = (1, 1, 0) to the point b = (2, 2, 0), along the paths (1) and (2)
in Fig. 1.21. What is

∮
v · dl for the loop that goes from a to b along (1) and

returns to a along (2)?

Solution
As always, dl = dx x̂ + dy ŷ + dz ẑ. Path (1) consists of two parts. Along the
“horizontal” segment, dy = dz = 0, so

(i) dl = dx x̂, y = 1, v · dl = y2 dx = dx, so
∫

v · dl = ∫ 2
1 dx = 1.

On the “vertical” stretch, dx = dz = 0, so

(ii) dl = dy ŷ, x = 2, v · dl = 2x(y + 1) dy = 4(y + 1) dy, so

∫
v · dl = 4

∫ 2

1
(y + 1) dy = 10.

By path (1), then,
∫ b

a
v · dl = 1 + 10 = 11.

Meanwhile, on path (2) x = y, dx = dy, and dz = 0, so
dl = dx x̂ + dx ŷ, v · dl = x2 dx + 2x(x + 1) dx = (3x2 + 2x) dx,

and ∫ b

a
v · dl =

∫ 2

1
(3x2 + 2x) dx = (x3 + x2)

∣∣2
1 = 10.

(The strategy here is to get everything in terms of one variable; I could just as well
have eliminated x in favor of y.)
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For the loop that goes out (1) and back (2), then,
∮

v · dl = 11 − 10 = 1.

(b) Surface Integrals. A surface integral is an expression of the form
∫

S
v · da, (1.50)

where v is again some vector function, and the integral is over a specified surface
S. Here da is an infinitesimal patch of area, with direction perpendicular to the
surface (Fig. 1.22). There are, of course, two directions perpendicular to any
surface, so the sign of a surface integral is intrinsically ambiguous. If the surface
is closed (forming a “balloon”), in which case I shall again put a circle on the
integral sign ∮

v · da,

then tradition dictates that “outward” is positive, but for open surfaces it’s arbi-
trary. If v describes the flow of a fluid (mass per unit area per unit time), then∫

v · da represents the total mass per unit time passing through the surface—
hence the alternative name, “flux.”

Ordinarily, the value of a surface integral depends on the particular surface
chosen, but there is a special class of vector functions for which it is independent
of the surface and is determined entirely by the boundary line. An important task
will be to characterize this special class of functions.

x

y

z
da

FIGURE 1.22
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Example 1.7. Calculate the surface integral of v = 2xz x̂ + (x+2) ŷ + y(z2−3)

ẑ over five sides (excluding the bottom) of the cubical box (side 2) in Fig. 1.23.
Let “upward and outward” be the positive direction, as indicated by the arrows.

Solution
Taking the sides one at a time:
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(i) x = 2, da = dy dz x̂, v · da = 2xz dy dz = 4z dy dz, so

∫
v · da = 4

∫ 2

0
dy

∫ 2

0
z dz = 16.

(ii) x = 0, da = −dy dz x̂, v · da = −2xz dy dz = 0, so∫
v · da = 0.

(iii) y = 2, da = dx dz ŷ, v · da = (x + 2) dx dz, so

∫
v · da =

∫ 2

0
(x + 2) dx

∫ 2

0
dz = 12.

(iv) y = 0, da = −dx dz ŷ, v · da = −(x + 2) dx dz, so

∫
v · da = −

∫ 2

0
(x + 2) dx

∫ 2

0
dz = −12.

(v) z = 2, da = dx dy ẑ, v · da = y(z2 − 3) dx dy = y dx dy, so

∫
v · da =

∫ 2

0
dx

∫ 2

0
y dy = 4.

The total flux is ∫
surface

v · da = 16 + 0 + 12 − 12 + 4 = 20.

(c) Volume Integrals. A volume integral is an expression of the form
∫

V
T dτ, (1.51)

where T is a scalar function and dτ is an infinitesimal volume element. In Carte-
sian coordinates,

dτ = dx dy dz. (1.52)

For example, if T is the density of a substance (which might vary from point to
point), then the volume integral would give the total mass. Occasionally we shall
encounter volume integrals of vector functions:

∫
v dτ =

∫
(vx x̂ + vy ŷ + vz ẑ)dτ = x̂

∫
vx dτ + ŷ

∫
vydτ + ẑ

∫
vzdτ ;

(1.53)

because the unit vectors (x̂, ŷ, and ẑ) are constants, they come outside the integral.
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Example 1.8. Calculate the volume integral of T = xyz2 over the prism in
Fig. 1.24.

Solution
You can do the three integrals in any order. Let’s do x first: it runs from 0 to
(1 − y), then y (it goes from 0 to 1), and finally z (0 to 3):

∫
T dτ =

∫ 3

0
z2

{∫ 1

0
y

[∫ 1−y

0
x dx

]
dy

}
dz

= 1

2

∫ 3

0
z2 dz

∫ 1

0
(1 − y)2 y dy = 1

2
(9)

(
1

12

)
= 3

8
.

x

y

z

1
1

3

FIGURE 1.24

Problem 1.29 Calculate the line integral of the function v = x2 x̂ + 2yz ŷ + y2 ẑ
from the origin to the point (1,1,1) by three different routes:

(a) (0, 0, 0) → (1, 0, 0) → (1, 1, 0) → (1, 1, 1).

(b) (0, 0, 0) → (0, 0, 1) → (0, 1, 1) → (1, 1, 1).

(c) The direct straight line.

(d) What is the line integral around the closed loop that goes out along path (a) and
back along path (b)?

Problem 1.30 Calculate the surface integral of the function in Ex. 1.7, over the bot-
tom of the box. For consistency, let “upward” be the positive direction. Does the
surface integral depend only on the boundary line for this function? What is the
total flux over the closed surface of the box (including the bottom)? [Note: For the
closed surface, the positive direction is “outward,” and hence “down,” for the bottom
face.]

Problem 1.31 Calculate the volume integral of the function T = z2 over the tetra-
hedron with corners at (0,0,0), (1,0,0), (0,1,0), and (0,0,1).
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1.3.2 The Fundamental Theorem of Calculus

Suppose f (x) is a function of one variable. The fundamental theorem of calcu-
lus says:

∫ b

a

(
d f

dx

)
dx = f (b) − f (a). (1.54)

In case this doesn’t look familiar, I’ll write it another way:
∫ b

a
F(x) dx = f (b) − f (a),

where d f/dx = F(x). The fundamental theorem tells you how to integrate F(x):
you think up a function f (x) whose derivative is equal to F .

Geometrical Interpretation: According to Eq. 1.33, d f = (d f/dx)dx is the
infinitesimal change in f when you go from (x) to (x + dx). The fundamental
theorem (Eq. 1.54) says that if you chop the interval from a to b (Fig. 1.25) into
many tiny pieces, dx , and add up the increments d f from each little piece, the
result is (not surprisingly) equal to the total change in f : f (b) − f (a). In other
words, there are two ways to determine the total change in the function: either
subtract the values at the ends or go step-by-step, adding up all the tiny increments
as you go. You’ll get the same answer either way.

Notice the basic format of the fundamental theorem: the integral of a derivative
over some region is given by the value of the function at the end points (bound-
aries). In vector calculus there are three species of derivative (gradient, diver-
gence, and curl), and each has its own “fundamental theorem,” with essentially
the same format. I don’t plan to prove these theorems here; rather, I will explain
what they mean, and try to make them plausible. Proofs are given in Appendix A.

1.3.3 The Fundamental Theorem for Gradients

Suppose we have a scalar function of three variables T (x, y, z). Starting at point
a, we move a small distance dl1 (Fig. 1.26). According to Eq. 1.37, the function
T will change by an amount

dT = (∇T ) · dl1.

xbdxa

f (x)

f (b)

f (a)

FIGURE 1.25

d l1

y

z

x

a

b

FIGURE 1.26
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Now we move a little further, by an additional small displacement dl2; the incre-
mental change in T will be (∇T ) · dl2. In this manner, proceeding by infinitesimal
steps, we make the journey to point b. At each step we compute the gradient of T
(at that point) and dot it into the displacement dl. . . this gives us the change in T .
Evidently the total change in T in going from a to b (along the path selected) is

∫ b

a
(∇T ) · dl = T (b) − T (a). (1.55)

This is the fundamental theorem for gradients; like the “ordinary” fundamental
theorem, it says that the integral (here a line integral) of a derivative (here the
gradient) is given by the value of the function at the boundaries (a and b).

Geometrical Interpretation: Suppose you wanted to determine the height of
the Eiffel Tower. You could climb the stairs, using a ruler to measure the rise at
each step, and adding them all up (that’s the left side of Eq. 1.55), or you could
place altimeters at the top and the bottom, and subtract the two readings (that’s
the right side); you should get the same answer either way (that’s the fundamental
theorem).

Incidentally, as we found in Ex. 1.6, line integrals ordinarily depend on the
path taken from a to b. But the right side of Eq. 1.55 makes no reference to the
path—only to the end points. Evidently, gradients have the special property that
their line integrals are path independent:

Corollary 1:
∫ b

a (∇T ) · dl is independent of the path taken from a to b.

Corollary 2:
∮
(∇T ) · dl = 0, since the beginning and end points

are identical, and hence T (b) − T (a) = 0.

Example 1.9. Let T = xy2, and take point a to be the origin (0, 0, 0) and b the
point (2, 1, 0). Check the fundamental theorem for gradients.

Solution
Although the integral is independent of path, we must pick a specific path
in order to evaluate it. Let’s go out along the x axis (step i) and then up
(step ii) (Fig. 1.27). As always, dl = dx x̂ + dy ŷ + dz ẑ; ∇T = y2 x̂ + 2xy ŷ.

(i) y = 0; dl = dx x̂, ∇T · dl = y2 dx = 0, so
∫

i
∇T · dl = 0.

(ii) x = 2; dl = dy ŷ, ∇T · dl = 2xy dy = 4y dy, so

∫
ii
∇T · dl =

∫ 1

0
4y dy = 2y2

∣∣∣1

0
= 2.
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The total line integral is 2. Is this consistent with the fundamental theorem? Yes:
T (b) − T (a) = 2 − 0 = 2.

Now, just to convince you that the answer is independent of path, let me calcu-
late the same integral along path iii (the straight line from a to b):

(iii) y = 1
2 x, dy = 1

2 dx, ∇T · dl = y2 dx + 2xy dy = 3
4 x2 dx , so

∫
iii

∇T · dl =
∫ 2

0

3
4 x2 dx = 1

4 x3
∣∣∣2

0
= 2.

Problem 1.32 Check the fundamental theorem for gradients, using T = x2 +
4xy + 2yz3, the points a = (0, 0, 0), b = (1, 1, 1), and the three paths in Fig. 1.28:

(a) (0, 0, 0) → (1, 0, 0) → (1, 1, 0) → (1, 1, 1);

(b) (0, 0, 0) → (0, 0, 1) → (0, 1, 1) → (1, 1, 1);

(c) the parabolic path z = x2; y = x .

y

z

(a)x

y

z

(b)x

y

z

(c)x

FIGURE 1.28

1.3.4 The Fundamental Theorem for Divergences

The fundamental theorem for divergences states that:

∫
V

(∇ · v) dτ =
∮
S

v · da. (1.56)
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In honor, I suppose, of its great importance, this theorem has at least three special
names: Gauss’s theorem, Green’s theorem, or simply the divergence theorem.
Like the other “fundamental theorems,” it says that the integral of a derivative (in
this case the divergence) over a region (in this case a volume, V) is equal to the
value of the function at the boundary (in this case the surface S that bounds the
volume). Notice that the boundary term is itself an integral (specifically, a surface
integral). This is reasonable: the “boundary” of a line is just two end points, but
the boundary of a volume is a (closed) surface.

Geometrical Interpretation: If v represents the flow of an incompressible fluid,
then the flux of v (the right side of Eq. 1.56) is the total amount of fluid passing out
through the surface, per unit time. Now, the divergence measures the “spreading
out” of the vectors from a point—a place of high divergence is like a “faucet,”
pouring out liquid. If we have a bunch of faucets in a region filled with incom-
pressible fluid, an equal amount of liquid will be forced out through the bound-
aries of the region. In fact, there are two ways we could determine how much is
being produced: (a) we could count up all the faucets, recording how much each
puts out, or (b) we could go around the boundary, measuring the flow at each
point, and add it all up. You get the same answer either way:∫

(faucets within the volume) =
∮

(flow out through the surface).

This, in essence, is what the divergence theorem says.

Example 1.10. Check the divergence theorem using the function

v = y2 x̂ + (2xy + z2) ŷ + (2yz) ẑ

and a unit cube at the origin (Fig. 1.29).

Solution
In this case

∇ · v = 2(x + y),

and ∫
V

2(x + y) dτ = 2
∫ 1

0

∫ 1

0

∫ 1

0
(x + y) dx dy dz,

∫ 1

0
(x + y) dx = 1

2 + y,

∫ 1

0
( 1

2 + y) dy = 1,

∫ 1

0
1 dz = 1.

Thus, ∫
V

∇ · v dτ = 2.
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So much for the left side of the divergence theorem. To evaluate the surface
integral we must consider separately the six faces of the cube:

(i)
∫

v · da =
∫ 1

0

∫ 1

0
y2dy dz = 1

3 .

(ii)
∫

v · da = −
∫ 1

0

∫ 1

0
y2 dy dz = − 1

3 .

(iii)
∫

v · da =
∫ 1

0

∫ 1

0
(2x + z2) dx dz = 4

3 .

(iv)

∫
v · da = −

∫ 1

0

∫ 1

0
z2 dx dz = − 1

3 .

(v)

∫
v · da =

∫ 1

0

∫ 1

0
2y dx dy = 1.

(vi)
∫

v · da = −
∫ 1

0

∫ 1

0
0 dx dy = 0.

So the total flux is: ∮
S

v · da = 1
3 − 1

3 + 4
3 − 1

3 + 1 + 0 = 2,

as expected.

Problem 1.33 Test the divergence theorem for the function v = (xy) x̂ + (2yz) ŷ +
(3zx) ẑ. Take as your volume the cube shown in Fig. 1.30, with sides of length 2.
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1.3.5 The Fundamental Theorem for Curls

The fundamental theorem for curls, which goes by the special name of Stokes’
theorem, states that

∫
S

(∇ × v) · da =
∮
P

v · dl. (1.57)

As always, the integral of a derivative (here, the curl) over a region (here, a patch
of surface, S) is equal to the value of the function at the boundary (here, the
perimeter of the patch, P). As in the case of the divergence theorem, the boundary
term is itself an integral—specifically, a closed line integral.

Geometrical Interpretation: Recall that the curl measures the “twist” of the
vectors v; a region of high curl is a whirlpool—if you put a tiny paddle wheel
there, it will rotate. Now, the integral of the curl over some surface (or, more
precisely, the flux of the curl through that surface) represents the “total amount
of swirl,” and we can determine that just as well by going around the edge and
finding how much the flow is following the boundary (Fig. 1.31). Indeed,

∮
v · dl

is sometimes called the circulation of v.
You may have noticed an apparent ambiguity in Stokes’ theorem: concerning

the boundary line integral, which way are we supposed to go around (clockwise
or counterclockwise)? If we go the “wrong” way, we’ll pick up an overall sign
error. The answer is that it doesn’t matter which way you go as long as you are
consistent, for there is a compensating sign ambiguity in the surface integral:
Which way does da point? For a closed surface (as in the divergence theorem),
da points in the direction of the outward normal; but for an open surface, which
way is “out”? Consistency in Stokes’ theorem (as in all such matters) is given by
the right-hand rule: if your fingers point in the direction of the line integral, then
your thumb fixes the direction of da (Fig. 1.32).

Now, there are plenty of surfaces (infinitely many) that share any given bound-
ary line. Twist a paper clip into a loop, and dip it in soapy water. The soap film
constitutes a surface, with the wire loop as its boundary. If you blow on it, the soap
film will expand, making a larger surface, with the same boundary. Ordinarily, a
flux integral depends critically on what surface you integrate over, but evidently
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this is not the case with curls. For Stokes’ theorem says that
∫
(∇ × v) · da is equal

to the line integral of v around the boundary, and the latter makes no reference to
the specific surface you choose.

Corollary 1:
∫
(∇ × v) · da depends only on the boundary line, not

on the particular surface used.

Corollary 2:
∮
(∇ × v) · da = 0 for any closed surface, since the

boundary line, like the mouth of a balloon, shrinks
down to a point, and hence the right side of Eq. 1.57
vanishes.

These corollaries are analogous to those for the gradient theorem. We will develop
the parallel further in due course.

Example 1.11. Suppose v = (2xz + 3y2)ŷ + (4yz2)ẑ. Check Stokes’ theorem
for the square surface shown in Fig. 1.33.

Solution
Here

∇ × v = (4z2 − 2x) x̂ + 2z ẑ and da = dy dz x̂.

x
y

z

1

1

(iv) (ii)

(iii)

(i)

FIGURE 1.33

(In saying that da points in the x direction, we are committing ourselves to a
counterclockwise line integral. We could as well write da = −dy dz x̂, but then
we would be obliged to go clockwise.) Since x = 0 for this surface,

∫
(∇ × v) · da =

∫ 1

0

∫ 1

0
4z2 dy dz = 4

3
.
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Now, what about the line integral? We must break this up into four segments:

(i) x = 0, z = 0, v · dl = 3y2 dy,
∫

v · dl = ∫ 1
0 3y2 dy = 1,

(ii) x = 0, y = 1, v · dl = 4z2 dz,
∫

v · dl = ∫ 1
0 4z2 dz = 4

3
,

(iii) x = 0, z = 1, v · dl = 3y2 dy,
∫

v · dl = ∫ 0
1 3y2 dy = −1,

(iv) x = 0, y = 0, v · dl = 0,
∫

v · dl = ∫ 0
1 0 dz = 0.

So ∮
v · dl = 1 + 4

3
− 1 + 0 = 4

3
.

It checks.
A point of strategy: notice how I handled step (iii). There is a temptation to

write dl = −dy ŷ here, since the path goes to the left. You can get away with this,
if you absolutely insist, by running the integral from 0 → 1. But it is much safer
to say dl = dx x̂ + dy ŷ + dz ẑ always (never any minus signs) and let the limits
of the integral take care of the direction.

Problem 1.34 Test Stokes’ theorem for the function v = (xy) x̂ + (2yz) ŷ +
(3zx) ẑ, using the triangular shaded area of Fig. 1.34.

Problem 1.35 Check Corollary 1 by using the same function and boundary line as
in Ex. 1.11, but integrating over the five faces of the cube in Fig. 1.35. The back of
the cube is open.
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1.3.6 Integration by Parts

The technique known (awkwardly) as integration by parts exploits the product
rule for derivatives:

d

dx
( f g) = f

(
dg

dx

)
+ g

(
d f

dx

)
.
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Integrating both sides, and invoking the fundamental theorem:

∫ b

a

d

dx
( f g) dx = f g

∣∣∣b

a
=

∫ b

a
f

(
dg

dx

)
dx +

∫ b

a
g

(
d f

dx

)
dx,

or
∫ b

a
f

(
dg

dx

)
dx = −

∫ b

a
g

(
d f

dx

)
dx + f g

∣∣∣b

a
. (1.58)

That’s integration by parts. It applies to the situation in which you are called upon
to integrate the product of one function ( f ) and the derivative of another (g); it
says you can transfer the derivative from g to f , at the cost of a minus sign and a
boundary term.

Example 1.12. Evaluate the integral
∫ ∞

0
xe−x dx .

Solution
The exponential can be expressed as a derivative:

e−x = d

dx

(−e−x
) ;

in this case, then, f (x) = x , g(x) = −e−x , and d f/dx = 1, so
∫ ∞

0
xe−x dx =

∫ ∞

0
e−x dx − xe−x

∣∣∣∞
0

= −e−x
∣∣∣∞
0

= 1.

We can exploit the product rules of vector calculus, together with the appro-
priate fundamental theorems, in exactly the same way. For example, integrating

∇ · ( f A) = f (∇ · A) + A · (∇ f )

over a volume, and invoking the divergence theorem, yields
∫

∇ · ( f A) dτ =
∫

f (∇ · A) dτ +
∫

A · (∇ f ) dτ =
∮

f A · da,

or ∫
V

f (∇ · A) dτ = −
∫

V
A · (∇ f ) dτ +

∮
S

f A · da. (1.59)

Here again the integrand is the product of one function ( f ) and the derivative (in
this case the divergence) of another (A), and integration by parts licenses us to
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transfer the derivative from A to f (where it becomes a gradient), at the cost of a
minus sign and a boundary term (in this case a surface integral).

You might wonder how often one is likely to encounter an integral involving
the product of one function and the derivative of another; the answer is surpris-
ingly often, and integration by parts turns out to be one of the most powerful tools
in vector calculus.

Problem 1.36

(a) Show that∫
S

f (∇ × A) · da =
∫
S
[A × (∇ f )] · da +

∮
P

f A · dl. (1.60)

(b) Show that∫
V

B · (∇ × A) dτ =
∫
V

A · (∇ × B) dτ +
∮
S
(A × B) · da. (1.61)

1.4 CURVILINEAR COORDINATES

1.4.1 Spherical Coordinates

You can label a point P by its Cartesian coordinates (x, y, z), but sometimes it
is more convenient to use spherical coordinates (r, θ, φ); r is the distance from
the origin (the magnitude of the position vector r), θ (the angle down from the
z axis) is called the polar angle, and φ (the angle around from the x axis) is the
azimuthal angle. Their relation to Cartesian coordinates can be read from
Fig. 1.36:

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ. (1.62)

Figure 1.36 also shows three unit vectors, r̂, θ̂ , φ̂, pointing in the direction of
increase of the corresponding coordinates. They constitute an orthogonal (mutu-
ally perpendicular) basis set (just like x̂, ŷ, ẑ), and any vector A can be expressed
in terms of them, in the usual way:

A = Ar r̂ + Aθ θ̂ + Aφ φ̂; (1.63)

Ar , Aθ , and Aφ are the radial, polar, and azimuthal components of A. In terms of
the Cartesian unit vectors,

r̂ = sin θ cos φ x̂ + sin θ sin φ ŷ + cos θ ẑ,
θ̂ = cos θ cos φ x̂ + cos θ sin φ ŷ − sin θ ẑ,
φ̂ = − sin φ x̂ + cos φ ŷ,

⎫⎬
⎭ (1.64)

as you can check for yourself (Prob. 1.38). I have put these formulas inside the
back cover, for easy reference.
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But there is a poisonous snake lurking here that I’d better warn you about:
r̂, θ̂ , and φ̂ are associated with a particular point P , and they change direction
as P moves around. For example, r̂ always points radially outward, but “radially
outward” can be the x direction, the y direction, or any other direction, depend-
ing on where you are. In Fig. 1.37, A = ŷ and B = −ŷ, and yet both of them
would be written as r̂ in spherical coordinates. One could take account of this
by explicitly indicating the point of reference: r̂(θ, φ), θ̂(θ, φ), φ̂(θ, φ), but this
would be cumbersome, and as long as you are alert to the problem, I don’t think it
will cause difficulties.9 In particular, do not naïvely combine the spherical compo-
nents of vectors associated with different points (in Fig. 1.37, A + B = 0, not 2r̂,
and A · B = −1, not +1). Beware of differentiating a vector that is expressed in
spherical coordinates, since the unit vectors themselves are functions of position
(∂ r̂/∂θ = θ̂ , for example). And do not take r̂, θ̂ , and φ̂ outside an integral, as I
did with x̂, ŷ, and ẑ in Eq. 1.53. In general, if you’re uncertain about the validity
of an operation, rewrite the problem using Cartesian coordinates, for which this
difficulty does not arise.

An infinitesimal displacement in the r̂ direction is simply dr (Fig. 1.38a), just
as an infinitesimal element of length in the x direction is dx :

dlr = dr. (1.65)

x

y

z

AB
1−1

FIGURE 1.37

9I claimed back at the beginning that vectors have no location, and I’ll stand by that. The vectors
themselves live “out there,” completely independent of our choice of coordinates. But the notation we
use to represent them does depend on the point in question, in curvilinear coordinates.
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On the other hand, an infinitesimal element of length in the θ̂ direction (Fig. 1.38b)
is not just dθ (that’s an angle—it doesn’t even have the right units for a length);
rather,

dlθ = r dθ. (1.66)

Similarly, an infinitesimal element of length in the φ̂ direction (Fig. 1.38c) is

dlφ = r sin θ dφ. (1.67)

Thus the general infinitesimal displacement dl is

dl = dr r̂ + r dθ θ̂ + r sin θ dφ φ̂. (1.68)

This plays the role (in line integrals, for example) that dl = dx x̂ + dy ŷ + dz ẑ
played in Cartesian coordinates.

The infinitesimal volume element dτ , in spherical coordinates, is the product
of the three infinitesimal displacements:

dτ = dlr dlθ dlφ = r2 sin θ dr dθ dφ. (1.69)

I cannot give you a general expression for surface elements da, since these depend
on the orientation of the surface. You simply have to analyze the geometry for any
given case (this goes for Cartesian and curvilinear coordinates alike). If you are
integrating over the surface of a sphere, for instance, then r is constant, whereas
θ and φ change (Fig. 1.39), so

da1 = dlθ dlφ r̂ = r2 sin θ dθ dφ r̂.

On the other hand, if the surface lies in the xy plane, say, so that θ is constant (to
wit: π/2) while r and φ vary, then

da2 = dlr dlφ θ̂ = r dr dφ θ̂ .

Notice, finally, that r ranges from 0 to ∞, φ from 0 to 2π , and θ from 0 to π

(not 2π—that would count every point twice).10

10Alternatively, you could run φ from 0 to π (the “eastern hemisphere”) and cover the “western hemi-
sphere” by extending θ from π up to 2π . But this is very bad notation, since, among other things,
sin θ will then run negative, and you’ll have to put absolute value signs around that term in volume
and surface elements (area and volume being intrinsically positive quantities).
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Example 1.13. Find the volume of a sphere of radius R.

Solution

V =
∫

dτ =
∫ R

r=0

∫ π

θ=0

∫ 2π

φ=0
r2 sin θ dr dθ dφ

=
(∫ R

0
r2 dr

)(∫ π

0
sin θ dθ

) (∫ 2π

0
dφ

)

=
(

R3

3

)
(2)(2π) = 4

3
π R3

(not a big surprise).

So far we have talked only about the geometry of spherical coordinates. Now
I would like to “translate” the vector derivatives (gradient, divergence, curl, and
Laplacian) into r , θ , φ notation. In principle, this is entirely straightforward: in
the case of the gradient,

∇T = ∂T

∂x
x̂ + ∂T

∂y
ŷ + ∂T

∂z
ẑ,

for instance, we would first use the chain rule to expand the partials:

∂T

∂x
= ∂T

∂r

(
∂r

∂x

)
+ ∂T

∂θ

(
∂θ

∂x

)
+ ∂T

∂φ

(
∂φ

∂x

)
.

The terms in parentheses could be worked out from Eq. 1.62—or rather, the in-
verse of those equations (Prob. 1.37). Then we’d do the same for ∂T/∂y and
∂T/∂z. Finally, we’d substitute in the formulas for x̂, ŷ, and ẑ in terms of r̂, θ̂ ,
and φ̂ (Prob. 1.38). It would take an hour to figure out the gradient in spherical
coordinates by this brute-force method. I suppose this is how it was first done, but
there is a much more efficient indirect approach, explained in Appendix A, which
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has the extra advantage of treating all coordinate systems at once. I described the
“straightforward” method only to show you that there is nothing subtle or mys-
terious about transforming to spherical coordinates: you’re expressing the same
quantity (gradient, divergence, or whatever) in different notation, that’s all.

Here, then, are the vector derivatives in spherical coordinates:

Gradient:

∇T = ∂T

∂r
r̂ + 1

r

∂T

∂θ
θ̂ + 1

r sin θ

∂T

∂φ
φ̂. (1.70)

Divergence:

∇ · v = 1

r2

∂

∂r
(r2vr ) + 1

r sin θ

∂

∂θ
(sin θvθ ) + 1

r sin θ

∂vφ

∂φ
. (1.71)

Curl:

∇ × v = 1

r sin θ

[
∂

∂θ
(sin θvφ) − ∂vθ

∂φ

]
r̂ + 1

r

[
1

sin θ

∂vr

∂φ
− ∂

∂r
(rvφ)

]
θ̂

+ 1

r

[
∂

∂r
(rvθ ) − ∂vr

∂θ

]
φ̂. (1.72)

Laplacian:

∇2T = 1

r2

∂

∂r

(
r2 ∂T

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂T

∂θ

)
+ 1

r2 sin2 θ

∂2T

∂φ2
. (1.73)

For reference, these formulas are listed inside the front cover.

Problem 1.37 Find formulas for r, θ, φ in terms of x, y, z (the inverse, in other
words, of Eq. 1.62).

Problem 1.38 Express the unit vectors r̂, θ̂ , φ̂ in terms of x̂, ŷ, ẑ (that is, derive•
Eq. 1.64). Check your answers several ways (r̂ · r̂ ?= 1, θ̂ · φ̂

?= 0, r̂ × θ̂
?= φ̂, . . .).

Also work out the inverse formulas, giving x̂, ŷ, ẑ in terms of r̂, θ̂ , φ̂ (and θ, φ).

Problem 1.39•
(a) Check the divergence theorem for the function v1 = r 2r̂, using as your volume

the sphere of radius R, centered at the origin.

(b) Do the same for v2 = (1/r 2)r̂. (If the answer surprises you, look back at
Prob. 1.16.)

Problem 1.40 Compute the divergence of the function

v = (r cos θ) r̂ + (r sin θ) θ̂ + (r sin θ cos φ) φ̂.

Check the divergence theorem for this function, using as your volume the inverted
hemispherical bowl of radius R, resting on the xy plane and centered at the origin
(Fig. 1.40).
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Problem 1.41 Compute the gradient and Laplacian of the function T = r(cos θ +
sin θ cos φ). Check the Laplacian by converting T to Cartesian coordinates and
using Eq. 1.42. Test the gradient theorem for this function, using the path shown
in Fig. 1.41, from (0, 0, 0) to (0, 0, 2).

1.4.2 Cylindrical Coordinates

The cylindrical coordinates (s, φ, z) of a point P are defined in Fig. 1.42. Notice
that φ has the same meaning as in spherical coordinates, and z is the same as
Cartesian; s is the distance to P from the z axis, whereas the spherical coordinate
r is the distance from the origin. The relation to Cartesian coordinates is

x = s cos φ, y = s sin φ, z = z. (1.74)

The unit vectors (Prob. 1.42) are

ŝ = cos φ x̂ + sin φ ŷ,

φ̂ = − sin φ x̂ + cos φ ŷ,

ẑ = ẑ.

⎫⎬
⎭ (1.75)

The infinitesimal displacements are

dls = ds, dlφ = s dφ, dlz = dz, (1.76)
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so

dl = ds ŝ + s dφ φ̂ + dz ẑ, (1.77)

and the volume element is

dτ = s ds dφ dz. (1.78)

The range of s is 0 → ∞, φ goes from 0 → 2π , and z from −∞ to ∞.
The vector derivatives in cylindrical coordinates are:

Gradient:

∇T = ∂T

∂s
ŝ + 1

s

∂T

∂φ
φ̂ + ∂T

∂z
ẑ. (1.79)

Divergence:

∇ · v = 1

s

∂

∂s
(svs) + 1

s

∂vφ

∂φ
+ ∂vz

∂z
. (1.80)

Curl:

∇ × v =
(

1

s

∂vz

∂φ
− ∂vφ

∂z

)
ŝ +

(
∂vs

∂z
− ∂vz

∂s

)
φ̂ + 1

s

[
∂

∂s
(svφ) − ∂vs

∂φ

]
ẑ.

(1.81)

Laplacian:

∇2T = 1

s

∂

∂s

(
s
∂T

∂s

)
+ 1

s2

∂2T

∂φ2
+ ∂2T

∂z2
. (1.82)

These formulas are also listed inside the front cover.

Problem 1.42 Express the cylindrical unit vectors ŝ, φ̂, ẑ in terms of x̂, ŷ, ẑ (that is,
derive Eq. 1.75). “Invert” your formulas to get x̂, ŷ, ẑ in terms of ŝ, φ̂, ẑ (and φ).
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Problem 1.43

(a) Find the divergence of the function

v = s(2 + sin2 φ) ŝ + s sin φ cos φ φ̂ + 3z ẑ.

(b) Test the divergence theorem for this function, using the quarter-cylinder
(radius 2, height 5) shown in Fig. 1.43.

(c) Find the curl of v.

1.5 THE DIRAC DELTA FUNCTION

1.5.1 The Divergence of r̂/r2

Consider the vector function

v = 1

r2
r̂. (1.83)

At every location, v is directed radially outward (Fig. 1.44); if ever there was a
function that ought to have a large positive divergence, this is it. And yet, when
you actually calculate the divergence (using Eq. 1.71), you get precisely zero:

∇ · v = 1

r2

∂

∂r

(
r2 1

r2

)
= 1

r2

∂

∂r
(1) = 0. (1.84)

(You will have encountered this paradox already, if you worked Prob. 1.16.) The
plot thickens when we apply the divergence theorem to this function. Suppose
we integrate over a sphere of radius R, centered at the origin (Prob. 1.38b); the
surface integral is

∮
v · da =

∫ (
1

R2
r̂
)

· (R2 sin θ dθ dφ r̂)

=
(∫ π

0
sin θ dθ

) (∫ 2π

0
dφ

)
= 4π. (1.85)

FIGURE 1.44
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But the volume integral,
∫ ∇ · v dτ , is zero, if we are really to believe Eq. 1.84.

Does this mean that the divergence theorem is false? What’s going on here?
The source of the problem is the point r = 0, where v blows up (and where,

in Eq. 1.84, we have unwittingly divided by zero). It is quite true that ∇ · v = 0
everywhere except the origin, but right at the origin the situation is more com-
plicated. Notice that the surface integral (Eq. 1.85) is independent of R; if the
divergence theorem is right (and it is), we should get

∫
(∇ · v) dτ = 4π for any

sphere centered at the origin, no matter how small. Evidently the entire contribu-
tion must be coming from the point r = 0! Thus, ∇ · v has the bizarre property
that it vanishes everywhere except at one point, and yet its integral (over any
volume containing that point) is 4π . No ordinary function behaves like that. (On
the other hand, a physical example does come to mind: the density (mass per unit
volume) of a point particle. It’s zero except at the exact location of the particle, and
yet its integral is finite—namely, the mass of the particle.) What we have stum-
bled on is a mathematical object known to physicists as the Dirac delta function.
It arises in many branches of theoretical physics. Moreover, the specific problem
at hand (the divergence of the function r̂/r2) is not just some arcane curiosity—it
is, in fact, central to the whole theory of electrodynamics. So it is worthwhile to
pause here and study the Dirac delta function with some care.

1.5.2 The One-Dimensional Dirac Delta Function

The one-dimensional Dirac delta function, δ(x), can be pictured as an infinitely
high, infinitesimally narrow “spike,” with area 1 (Fig. 1.45). That is to say:

δ(x) =
{

0, if x �= 0
∞, if x = 0

}
(1.86)

and11

∫ ∞

−∞
δ(x) dx = 1. (1.87)

x

δ(x)

Area 1

a

FIGURE 1.45

11Notice that the dimensions of δ(x) are one over the dimensions of its argument; if x is a length, δ(x)

carries the units m−1.
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Technically, δ(x) is not a function at all, since its value is not finite at x = 0; in the
mathematical literature it is known as a generalized function, or distribution. It
is, if you like, the limit of a sequence of functions, such as rectangles Rn(x), of
height n and width 1/n, or isosceles triangles Tn(x), of height n and base 2/n
(Fig. 1.46).

If f (x) is some “ordinary” function (that is, not another delta function—in
fact, just to be on the safe side, let’s say that f (x) is continuous), then the product
f (x)δ(x) is zero everywhere except at x = 0. It follows that

f (x)δ(x) = f (0)δ(x). (1.88)

(This is the most important fact about the delta function, so make sure you under-
stand why it is true: since the product is zero anyway except at x = 0, we may as
well replace f (x) by the value it assumes at the origin.) In particular

∫ ∞

−∞
f (x)δ(x) dx = f (0)

∫ ∞

−∞
δ(x) dx = f (0). (1.89)

Under an integral, then, the delta function “picks out” the value of f (x) at x = 0.
(Here and below, the integral need not run from −∞ to +∞; it is sufficient that
the domain extend across the delta function, and −ε to +ε would do as well.)

Of course, we can shift the spike from x = 0 to some other point, x = a
(Fig. 1.47):

xa

δ(x − a)

Area 1

FIGURE 1.47
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δ(x − a) =
{

0, if x �= a
∞, if x = a

}
with

∫ ∞

−∞
δ(x − a) dx = 1. (1.90)

Equation 1.88 becomes

f (x)δ(x − a) = f (a)δ(x − a), (1.91)

and Eq. 1.89 generalizes to

∫ ∞

−∞
f (x)δ(x − a) dx = f (a). (1.92)

Example 1.14. Evaluate the integral

∫ 3

0
x3δ(x − 2) dx .

Solution
The delta function picks out the value of x3 at the point x = 2, so the integral
is 23 = 8. Notice, however, that if the upper limit had been 1 (instead of 3), the
answer would be 0, because the spike would then be outside the domain of inte-
gration.

Although δ itself is not a legitimate function, integrals over δ are perfectly
acceptable. In fact, it’s best to think of the delta function as something that is
always intended for use under an integral sign. In particular, two expressions
involving delta functions (say, D1(x) and D2(x)) are considered equal if 12

∫ ∞

−∞
f (x)D1(x) dx =

∫ ∞

−∞
f (x)D2(x) dx, (1.93)

for all (“ordinary”) functions f (x).

Example 1.15. Show that

δ(kx) = 1

|k|δ(x), (1.94)

where k is any (nonzero) constant. (In particular, δ(−x) = δ(x).)

12I emphasize that the integrals must be equal for any f (x). Suppose D1(x) and D2(x) actually
differed, say, in the neighborhood of the point x = 17. Then we could pick a function f (x) that was
sharply peaked about x = 17, and the integrals would not be equal.
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Solution
For an arbitrary test function f (x), consider the integral∫ ∞

−∞
f (x)δ(kx) dx .

Changing variables, we let y ≡ kx , so that x = y/k, and dx = 1/k dy. If k is
positive, the integration still runs from −∞ to +∞, but if k is negative, then
x = ∞ implies y = −∞, and vice versa, so the order of the limits is reversed.
Restoring the “proper” order costs a minus sign. Thus∫ ∞

−∞
f (x)δ(kx) dx = ±

∫ ∞

−∞
f (y/k)δ(y)

dy

k
= ±1

k
f (0) = 1

|k| f (0).

(The lower signs apply when k is negative, and we account for this neatly by
putting absolute value bars around the final k, as indicated.) Under the integral
sign, then, δ(kx) serves the same purpose as (1/|k|)δ(x):∫ ∞

−∞
f (x)δ(kx) dx =

∫ ∞

−∞
f (x)

[
1

|k|δ(x)

]
dx .

According to the criterion Eq. 1.93, therefore, δ(kx) and (1/|k|)δ(x) are equal.

Problem 1.44 Evaluate the following integrals:

(a)
∫ 6

2 (3x2 − 2x − 1) δ(x − 3) dx .

(b)
∫ 5

0 cos x δ(x − π) dx .

(c)
∫ 3

0 x3δ(x + 1) dx .

(d)
∫ ∞

−∞ ln(x + 3) δ(x + 2) dx .

Problem 1.45 Evaluate the following integrals:

(a)
∫ 2

−2(2x + 3) δ(3x) dx .

(b)
∫ 2

0 (x3 + 3x + 2) δ(1 − x) dx .

(c)
∫ 1

−1 9x2δ(3x + 1) dx .

(d)
∫ a

−∞ δ(x − b) dx .

Problem 1.46

(a) Show that

x
d

dx
(δ(x)) = −δ(x).

[Hint: Use integration by parts.]
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(b) Let θ(x) be the step function:

θ(x) ≡
⎧⎨
⎩

1, if x > 0

0, if x ≤ 0

⎫⎬
⎭ . (1.95)

Show that dθ/dx = δ(x).

1.5.3 The Three-Dimensional Delta Function

It is easy to generalize the delta function to three dimensions:

δ3(r) = δ(x) δ(y) δ(z). (1.96)

(As always, r ≡ x x̂ + y ŷ + z ẑ is the position vector, extending from the origin
to the point (x, y, z).) This three-dimensional delta function is zero everywhere
except at (0, 0, 0), where it blows up. Its volume integral is 1:

∫
all space

δ3(r) dτ =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
δ(x) δ(y) δ(z) dx dy dz = 1. (1.97)

And, generalizing Eq. 1.92,
∫

all space
f (r)δ3(r − a) dτ = f (a). (1.98)

As in the one-dimensional case, integration with δ picks out the value of the func-
tion f at the location of the spike.

We are now in a position to resolve the paradox introduced in Sect. 1.5.1.
As you will recall, we found that the divergence of r̂/r2 is zero everywhere ex-
cept at the origin, and yet its integral over any volume containing the origin is a
constant (to wit: 4π ). These are precisely the defining conditions for the Dirac
delta function; evidently

∇ ·
(

r̂
r2

)
= 4πδ3(r). (1.99)

More generally,

∇ ·
( r̂
r2

)
= 4πδ3(r), (1.100)

where, as always, r is the separation vector: r ≡ r − r′. Note that differentiation
here is with respect to r, while r′ is held constant. Incidentally, since

∇
(

1

r

)
= − r̂

r2 (1.101)
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(Prob. 1.13b), it follows that

∇2 1

r = −4πδ3(r). (1.102)

Example 1.16. Evaluate the integral

J =
∫

V
(r2 + 2)∇ ·

(
r̂
r2

)
dτ,

where V is a sphere13 of radius R centered at the origin.

Solution 1
Use Eq. 1.99 to rewrite the divergence, and Eq. 1.98 to do the integral:

J =
∫

V
(r2 + 2)4πδ3(r) dτ = 4π(0 + 2) = 8π.

This one-line solution demonstrates something of the power and beauty of the
delta function, but I would like to show you a second method, which is much
more cumbersome but serves to illustrate the method of integration by parts
(Sect. 1.3.6).

Solution 2
Using Eq. 1.59, we transfer the derivative from r̂/r2 to (r2 + 2):

J = −
∫

V

r̂
r2

· [∇(r2 + 2)] dτ +
∮

S
(r2 + 2)

r̂
r2

· da.

The gradient is

∇(r2 + 2) = 2r r̂,

so the volume integral becomes
∫

2

r
dτ =

∫
2

r
r2 sin θ dr dθ dφ = 8π

∫ R

0
r dr = 4π R2.

Meanwhile, on the boundary of the sphere (where r = R),

da = R2 sin θ dθ dφ r̂,

so the surface integral is∫
(R2 + 2) sin θ dθ dφ = 4π(R2 + 2).

13In proper mathematical jargon, “sphere” denotes the surface, and “ball” the volume it encloses.
But physicists are (as usual) sloppy about this sort of thing, and I use the word “sphere” for both
the surface and the volume. Where the meaning is not clear from the context, I will write “spherical
surface” or “spherical volume.” The language police tell me that the former is redundant and the latter
an oxymoron, but a poll of my physics colleagues reveals that this is (for us) the standard usage.
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Putting it all together,

J = −4π R2 + 4π(R2 + 2) = 8π,

as before.

Problem 1.47

(a) Write an expression for the volume charge density ρ(r) of a point charge q at
r′. Make sure that the volume integral of ρ equals q.

(b) What is the volume charge density of an electric dipole, consisting of a point
charge −q at the origin and a point charge +q at a?

(c) What is the volume charge density (in spherical coordinates) of a uniform, in-
finitesimally thin spherical shell of radius R and total charge Q, centered at the
origin? [Beware: the integral over all space must equal Q.]

Problem 1.48 Evaluate the following integrals:

(a)
∫
(r 2 + r · a + a2)δ3(r − a) dτ , where a is a fixed vector, a is its magnitude,

and the integral is over all space.

(b)
∫
V |r − b|2δ3(5r) dτ , where V is a cube of side 2, centered on the origin, and

b = 4 ŷ + 3 ẑ.

(c)
∫
V

[
r 4 + r 2(r · c) + c4

]
δ3(r − c) dτ , where V is a sphere of radius 6 about the

origin, c = 5 x̂ + 3 ŷ + 2 ẑ, and c is its magnitude.

(d)
∫
V r · (d − r)δ3(e − r) dτ , where d = (1, 2, 3), e = (3, 2, 1), and V is a sphere

of radius 1.5 centered at (2, 2, 2).

Problem 1.49 Evaluate the integral

J =
∫
V

e−r

(
∇ · r̂

r 2

)
dτ

(where V is a sphere of radius R, centered at the origin) by two different methods,
as in Ex. 1.16.

1.6 THE THEORY OF VECTOR FIELDS

1.6.1 The Helmholtz Theorem

Ever since Faraday, the laws of electricity and magnetism have been expressed
in terms of electric and magnetic fields, E and B. Like many physical laws,
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these are most compactly expressed as differential equations. Since E and B are
vectors, the differential equations naturally involve vector derivatives: divergence
and curl. Indeed, Maxwell reduced the entire theory to four equations, specifying
respectively the divergence and the curl of E and B.

Maxwell’s formulation raises an important mathematical question: To what
extent is a vector function determined by its divergence and curl? In other words,
if I tell you that the divergence of F (which stands for E or B, as the case may be)
is a specified (scalar) function D,

∇ · F = D,

and the curl of F is a specified (vector) function C,

∇ × F = C,

(for consistency, C must be divergenceless,

∇ · C = 0,

because the divergence of a curl is always zero), can you then determine the
function F?

Well. . . not quite. For example, as you may have discovered in Prob. 1.20, there
are many functions whose divergence and curl are both zero everywhere—the triv-
ial case F = 0, of course, but also F = yz x̂ + zx ŷ + xy ẑ, F = sin x cosh y x̂ −
cos x sinh y ŷ, etc. To solve a differential equation you must also be supplied with
appropriate boundary conditions. In electrodynamics we typically require that
the fields go to zero “at infinity” (far away from all charges).14 With that ex-
tra information, the Helmholtz theorem guarantees that the field is uniquely
determined by its divergence and curl. (The Helmholtz theorem is discussed in
Appendix B.)

1.6.2 Potentials

If the curl of a vector field (F) vanishes (everywhere), then F can be written as the
gradient of a scalar potential (V ):

∇ × F = 0 ⇐⇒ F = −∇V . (1.103)

(The minus sign is purely conventional.) That’s the essential burden of the follow-
ing theorem:

Theorem 1
Curl-less (or “irrotational”) fields. The following conditions are equivalent
(that is, F satisfies one if and only if it satisfies all the others):

14In some textbook problems the charge itself extends to infinity (we speak, for instance, of the electric
field of an infinite plane, or the magnetic field of an infinite wire). In such cases the normal boundary
conditions do not apply, and one must invoke symmetry arguments to determine the fields uniquely.
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(a) ∇ × F = 0 everywhere.

(b)
∫ b

a F · dl is independent of path, for any given end points.

(c)
∮

F · dl = 0 for any closed loop.

(d) F is the gradient of some scalar function: F = −∇V .

The potential is not unique—any constant can be added to V with impunity, since
this will not affect its gradient.

If the divergence of a vector field (F) vanishes (everywhere), then F can be
expressed as the curl of a vector potential (A):

∇ · F = 0 ⇐⇒ F = ∇ × A. (1.104)

That’s the main conclusion of the following theorem:

Theorem 2
Divergence-less (or “solenoidal”) fields. The following conditions are equivalent:

(a) ∇ · F = 0 everywhere.

(b)
∫

F · da is independent of surface, for any given boundary line.

(c)
∮

F · da = 0 for any closed surface.

(d) F is the curl of some vector function: F = ∇ × A.

The vector potential is not unique—the gradient of any scalar function can be
added to A without affecting the curl, since the curl of a gradient is zero.

You should by now be able to prove all the connections in these theorems, save
for the ones that say (a), (b), or (c) implies (d). Those are more subtle, and will
come later. Incidentally, in all cases (whatever its curl and divergence may be) a
vector field F can be written as the gradient of a scalar plus the curl of a vector:15

F = −∇V + ∇ × A (always). (1.105)

Problem 1.50

(a) Let F1 = x2 ẑ and F2 = x x̂ + y ŷ + z ẑ. Calculate the divergence and curl of
F1 and F2. Which one can be written as the gradient of a scalar? Find a scalar
potential that does the job. Which one can be written as the curl of a vector?
Find a suitable vector potential.

15In physics, the word field denotes generically any function of position (x, y, z) and time (t). But in
electrodynamics two particular fields (E and B) are of such paramount importance as to preempt the
term. Thus technically the potentials are also “fields,” but we never call them that.
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(b) Show that F3 = yz x̂ + zx ŷ + xy ẑ can be written both as the gradient of a
scalar and as the curl of a vector. Find scalar and vector potentials for this func-
tion.

Problem 1.51 For Theorem 1, show that (d) ⇒ (a), (a) ⇒ (c), (c) ⇒ (b), (b) ⇒ (c),
and (c) ⇒ (a).

Problem 1.52 For Theorem 2, show that (d) ⇒ (a), (a) ⇒ (c), (c) ⇒ (b), (b) ⇒ (c),
and (c) ⇒ (a).

Problem 1.53

(a) Which of the vectors in Problem 1.15 can be expressed as the gradient of a
scalar? Find a scalar function that does the job.

(b) Which can be expressed as the curl of a vector? Find such a vector.

More Problems on Chapter 1

Problem 1.54 Check the divergence theorem for the function

v = r 2 cos θ r̂ + r 2 cos φ θ̂ − r 2 cos θ sin φ φ̂,

using as your volume one octant of the sphere of radius R (Fig. 1.48). Make sure
you include the entire surface. [Answer: π R4/4]

Problem 1.55 Check Stokes’ theorem using the function v = ay x̂ + bx ŷ (a and
b are constants) and the circular path of radius R, centered at the origin in the xy
plane. [Answer: π R2(b − a)]

Problem 1.56 Compute the line integral of

v = 6 x̂ + yz2 ŷ + (3y + z) ẑ

along the triangular path shown in Fig. 1.49. Check your answer using Stokes’
theorem. [Answer: 8/3]

Problem 1.57 Compute the line integral of

v = (r cos2 θ) r̂ − (r cos θ sin θ) θ̂ + 3r φ̂

around the path shown in Fig. 1.50 (the points are labeled by their Cartesian coor-
dinates). Do it either in cylindrical or in spherical coordinates. Check your answer,
using Stokes’ theorem. [Answer: 3π/2]
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Problem 1.58 Check Stokes’ theorem for the function v = y ẑ, using the triangular
surface shown in Fig. 1.51. [Answer: a2]

Problem 1.59 Check the divergence theorem for the function

v = r 2 sin θ r̂ + 4r 2 cos θ θ̂ + r 2 tan θ φ̂,

using the volume of the “ice-cream cone” shown in Fig. 1.52 (the top surface
is spherical, with radius R and centered at the origin). [Answer: (π R4/12)(2π +
3
√

3)]

Problem 1.60 Here are two cute checks of the fundamental theorems:

(a) Combine Corollary 2 to the gradient theorem with Stokes’ theorem (v = ∇T , in
this case). Show that the result is consistent with what you already knew about
second derivatives.

(b) Combine Corollary 2 to Stokes’ theorem with the divergence theorem. Show
that the result is consistent with what you already knew.

Problem 1.61 Although the gradient, divergence, and curl theorems are the fun-•
damental integral theorems of vector calculus, it is possible to derive a number of
corollaries from them. Show that:

(a)
∫
V (∇T ) dτ = ∮

S T da. [Hint: Let v = cT , where c is a constant, in the diver-
gence theorem; use the product rules.]

(b)
∫
V (∇ × v) dτ = − ∮

S v × da. [Hint: Replace v by (v × c) in the divergence
theorem.]

(c)
∫
V [T ∇2U + (∇T ) · (∇U )] dτ = ∮

S(T ∇U ) · da. [Hint: Let v = T ∇U in the
divergence theorem.]

(d)
∫
V (T ∇2U − U∇2T ) dτ = ∮

S(T ∇U − U∇T ) · da. [Comment: This is some-
times called Green’s second identity; it follows from (c), which is known as
Green’s identity.]

(e)
∫
S ∇T × da = − ∮

P T dl. [Hint: Let v = cT in Stokes’ theorem.]
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Problem 1.62 The integral•

a ≡
∫
S

da (1.106)

is sometimes called the vector area of the surface S. If S happens to be flat, then
|a| is the ordinary (scalar) area, obviously.

(a) Find the vector area of a hemispherical bowl of radius R.

(b) Show that a = 0 for any closed surface. [Hint: Use Prob. 1.61a.]

(c) Show that a is the same for all surfaces sharing the same boundary.

(d) Show that

a = 1
2

∮
r × dl, (1.107)

where the integral is around the boundary line. [Hint: One way to do it is to draw
the cone subtended by the loop at the origin. Divide the conical surface up into
infinitesimal triangular wedges, each with vertex at the origin and opposite side dl,
and exploit the geometrical interpretation of the cross product (Fig. 1.8).]

(e) Show that ∮
(c · r) dl = a × c, (1.108)

for any constant vector c. [Hint: Let T = c · r in Prob. 1.61e.]

Problem 1.63•
(a) Find the divergence of the function

v = r̂
r
.

First compute it directly, as in Eq. 1.84. Test your result using the divergence theo-
rem, as in Eq. 1.85. Is there a delta function at the origin, as there was for r̂/r 2? What
is the general formula for the divergence of rn r̂? [Answer: ∇ · (rn r̂) = (n + 2)rn−1,
unless n = −2, in which case it is 4πδ3(r); for n < −2, the divergence is ill-defined
at the origin.]

(b) Find the curl of rn r̂. Test your conclusion using Prob. 1.61b. [Answer:
∇ × (rn r̂) = 0]

Problem 1.64 In case you’re not persuaded that ∇2(1/r) = −4πδ3(r) (Eq. 1.102
with r′ = 0 for simplicity), try replacing r by

√
r 2 + ε2, and watching what happens

as ε → 0.16 Specifically, let

D(r, ε) ≡ − 1

4π
∇2 1√

r 2 + ε2
.

16This problem was suggested by Frederick Strauch.
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To demonstrate that this goes to δ3(r) as ε → 0:

(a) Show that D(r, ε) = (3ε2/4π)(r 2 + ε2)−5/2.

(b) Check that D(0, ε) → ∞, as ε → 0.

(c) Check that D(r, ε) → 0, as ε → 0, for all r �= 0.

(d) Check that the integral of D(r, ε) over all space is 1.
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2 Electrostatics

2.1 THE ELECTRIC FIELD

2.1.1 Introduction

The fundamental problem electrodynamics hopes to solve is this (Fig. 2.1): We
have some electric charges, q1, q2, q3, . . . (call them source charges); what force
do they exert on another charge, Q (call it the test charge)? The positions of the
source charges are given (as functions of time); the trajectory of the test particle
is to be calculated. In general, both the source charges and the test charge are in
motion.

The solution to this problem is facilitated by the principle of superposition,
which states that the interaction between any two charges is completely unaffected
by the presence of others. This means that to determine the force on Q, we can first
compute the force F1, due to q1 alone (ignoring all the others); then we compute
the force F2, due to q2 alone; and so on. Finally, we take the vector sum of all
these individual forces: F = F1 + F2 + F3 + . . . Thus, if we can find the force
on Q due to a single source charge q, we are, in principle, done (the rest is just a
question of repeating the same operation over and over, and adding it all up).1

Well, at first sight this looks very easy: Why don’t I just write down the formula
for the force on Q due to q, and be done with it? I could, and in Chapter 10 I
shall, but you would be shocked to see it at this stage, for not only does the force
on Q depend on the separation distance r between the charges (Fig. 2.2), it also

q2

Q

“Source” charges

“Test” charge
q1

qi

FIGURE 2.1

Q

q

r

FIGURE 2.2

1The principle of superposition may seem “obvious” to you, but it did not have to be so simple: if
the electromagnetic force were proportional to the square of the total source charge, for instance, the
principle of superposition would not hold, since (q1 + q2)

2 �= q2
1 + q2

2 (there would be “cross terms”
to consider). Superposition is not a logical necessity, but an experimental fact.

59



60 Chapter 2 Electrostatics

depends on both their velocities and on the acceleration of q. Moreover, it is not
the position, velocity, and acceleration of q right now that matter: electromagnetic
“news” travels at the speed of light, so what concerns Q is the position, velocity,
and acceleration q had at some earlier time, when the message left.

Therefore, in spite of the fact that the basic question (“What is the force on
Q due to q?”) is easy to state, it does not pay to confront it head on; rather, we
shall go at it by stages. In the meantime, the theory we develop will allow for the
solution of more subtle electromagnetic problems that do not present themselves
in quite this simple format. To begin with, we shall consider the special case
of electrostatics in which all the source charges are stationary (though the test
charge may be moving).

2.1.2 Coulomb’s Law

What is the force on a test charge Q due to a single point charge q, that is at rest a
distance r away? The answer (based on experiments) is given by Coulomb’s law:

F = 1

4πε0

q Q

r2 r̂. (2.1)

The constant ε0 is called (ludicrously) the permittivity of free space. In SI units,
where force is in newtons (N), distance in meters (m), and charge in coulombs (C),

ε0 = 8.85 × 10−12 C2

N · m2
.

In words, the force is proportional to the product of the charges and inversely
proportional to the square of the separation distance. As always (Sect. 1.1.4), r is
the separation vector from r′ (the location of q) to r (the location of Q):

r = r − r′; (2.2)

r is its magnitude, and r̂ is its direction. The force points along the line from q to
Q; it is repulsive if q and Q have the same sign, and attractive if their signs are
opposite.

Coulomb’s law and the principle of superposition constitute the physical input
for electrostatics—the rest, except for some special properties of matter, is math-
ematical elaboration of these fundamental rules.

Problem 2.1

(a) Twelve equal charges, q, are situated at the corners of a regular 12-sided poly-
gon (for instance, one on each numeral of a clock face). What is the net force
on a test charge Q at the center?

(b) Suppose one of the 12 q’s is removed (the one at “6 o’clock”). What is the force
on Q? Explain your reasoning carefully.
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(c) Now 13 equal charges, q, are placed at the corners of a regular 13-sided
polygon. What is the force on a test charge Q at the center?

(d) If one of the 13 q’s is removed, what is the force on Q? Explain your reasoning.

2.1.3 The Electric Field

If we have several point charges q1, q2, . . . , qn , at distances r1, r2, . . . , rn from
Q, the total force on Q is evidently

F = F1 + F2 + . . . = 1

4πε0

(
q1 Q

r21
r̂1 + q2 Q

r22
r̂2 + . . .

)

= Q

4πε0

(
q1

r21
r̂1 + q2

r22
r̂2 + q3

r23
r̂3 + . . .

)
,

or

F = QE, (2.3)

where

E(r) ≡ 1

4πε0

n∑
i=1

qi

r2i
r̂i . (2.4)

E is called the electric field of the source charges. Notice that it is a function of
position (r), because the separation vectors ri depend on the location of the field
point P (Fig. 2.3). But it makes no reference to the test charge Q. The electric
field is a vector quantity that varies from point to point and is determined by the
configuration of source charges; physically, E(r) is the force per unit charge that
would be exerted on a test charge, if you were to place one at P .

What exactly is an electric field? I have deliberately begun with what you might
call the “minimal” interpretation of E, as an intermediate step in the calculation
of electric forces. But I encourage you to think of the field as a “real” physical

z

x

y
P

Source point

q1 ri

rr�i

q2
qi

Field
point

FIGURE 2.3
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entity, filling the space around electric charges. Maxwell himself came to believe
that electric and magnetic fields are stresses and strains in an invisible primordial
jellylike “ether.” Special relativity has forced us to abandon the notion of ether,
and with it Maxwell’s mechanical interpretation of electromagnetic fields. (It is
even possible, though cumbersome, to formulate classical electrodynamics as an
“action-at-a-distance” theory, and dispense with the field concept altogether.) I
can’t tell you, then, what a field is—only how to calculate it and what it can do
for you once you’ve got it.

Example 2.1. Find the electric field a distance z above the midpoint between
two equal charges (q), a distance d apart (Fig. 2.4a).

Solution
Let E1 be the field of the left charge alone, and E2 that of the right charge alone
(Fig. 2.4b). Adding them (vectorially), the horizontal components cancel and the
vertical components conspire:

Ez = 2
1

4πε0

q

r2 cos θ.

Here r = √
z2 + (d/2)2 and cos θ = z/r, so

E = 1

4πε0

2qz[
z2 + (d/2)2

]3/2 ẑ.

Check: When z � d you’re so far away that it just looks like a single charge
2q, so the field should reduce to E = 1

4πε0

2q
z2 ẑ. And it does (just set d → 0 in the

formula).

q x

z

q

P

z

d/2 d/2

(a)

q xq

z
θ

d/2 d/2

(b)

E2 E1

E

r

FIGURE 2.4

Problem 2.2 Find the electric field (magnitude and direction) a distance z above
the midpoint between equal and opposite charges (±q), a distance d apart (same as
Example 2.1, except that the charge at x = +d/2 is −q).
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r

r

r PP

P

dq

da�

dl�

dτ�

(a) Continuous
distribution

(c) Surface charge, σ (d) Volume charge, ρ

r
P

(b) Line charge, λ

FIGURE 2.5

2.1.4 Continuous Charge Distributions

Our definition of the electric field (Eq. 2.4) assumes that the source of the field
is a collection of discrete point charges qi . If, instead, the charge is distributed
continuously over some region, the sum becomes an integral (Fig. 2.5a):

E(r) = 1

4πε0

∫
1

r2 r̂ dq. (2.5)

If the charge is spread out along a line (Fig. 2.5b), with charge-per-unit-length
λ, then dq = λ dl ′ (where dl ′ is an element of length along the line); if the
charge is smeared out over a surface (Fig. 2.5c), with charge-per-unit-area σ , then
dq = σ da′ (where da′ is an element of area on the surface); and if the charge fills
a volume (Fig. 2.5d), with charge-per-unit-volume ρ, then dq = ρ dτ ′ (where dτ ′
is an element of volume):

dq → λ dl ′ ∼ σ da′ ∼ ρ dτ ′.

Thus the electric field of a line charge is

E(r) = 1

4πε0

∫
λ(r′)
r2 r̂ dl ′; (2.6)

for a surface charge,

E(r) = 1

4πε0

∫
σ(r′)
r2 r̂ da′; (2.7)

and for a volume charge,

E(r) = 1

4πε0

∫
ρ(r′)
r2 r̂ dτ ′. (2.8)
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Equation 2.8 itself is often referred to as “Coulomb’s law,” because it is such
a short step from the original (2.1), and because a volume charge is in a sense the
most general and realistic case. Please note carefully the meaning of r in these
formulas. Originally, in Eq. 2.4, ri stood for the vector from the source charge
qi to the field point r. Correspondingly, in Eqs. 2.5–2.8, r is the vector from dq
(therefore from dl ′, da′, or dτ ′) to the field point r.2

Example 2.2. Find the electric field a distance z above the midpoint of a straight
line segment of length 2L that carries a uniform line charge λ (Fig. 2.6).

x

dx

r

P

x

z

FIGURE 2.6

Solution
The simplest method is to chop the line into symmetrically placed pairs (at ±x),
quote the result of Ex. 2.1 (with d/2 → x , q → λ dx), and integrate (x : 0 → L).
But here’s a more general approach:3

r = z ẑ, r′ = x x̂, dl ′ = dx;
r = r − r′ = z ẑ − x x̂, r =

√
z2 + x2, r̂ = r

r = z ẑ − x x̂√
z2 + x2

.

E = 1

4πε0

∫ L

−L

λ

z2 + x2

z ẑ − x x̂√
z2 + x2

dx

= λ

4πε0

[
z ẑ

∫ L

−L

1

(z2 + x2)3/2
dx − x̂

∫ L

−L

x

(z2 + x2)3/2
dx

]

= λ

4πε0

[
z ẑ

(
x

z2
√

z2 + x2

)∣∣∣∣
L

−L

− x̂
(

− 1√
z2 + x2

)∣∣∣∣
L

−L

]

= 1

4πε0

2λL

z
√

z2 + L2
ẑ.

2Warning: The unit vector r̂ is not constant; its direction depends on the source point r′, and hence
it cannot be taken outside the integrals (Eqs. 2.5–2.8). In practice, you must work with Cartesian
components (x̂, ŷ, ẑ are constant, and do come out), even if you use curvilinear coordinates to perform
the integration.
3Ordinarily I’ll put a prime on the source coordinates, but where no confusion can arise I’ll remove
the prime to simplify the notation.
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For points far from the line (z � L),

E ∼= 1

4πε0

2λL

z2
.

This makes sense: From far away the line looks like a point charge q = 2λL . In
the limit L → ∞, on the other hand, we obtain the field of an infinite straight
wire:

E = 1

4πε0

2λ

z
. (2.9)

Problem 2.3 Find the electric field a distance z above one end of a straight line
segment of length L (Fig. 2.7) that carries a uniform line charge λ. Check that your
formula is consistent with what you would expect for the case z � L .

P

z

L

FIGURE 2.7

P

z

a

FIGURE 2.8

P

z

r

FIGURE 2.9

Problem 2.4 Find the electric field a distance z above the center of a square loop
(side a) carrying uniform line charge λ (Fig. 2.8). [Hint: Use the result of Ex. 2.2.]

Problem 2.5 Find the electric field a distance z above the center of a circular loop
of radius r (Fig. 2.9) that carries a uniform line charge λ.

Problem 2.6 Find the electric field a distance z above the center of a flat circular
disk of radius R (Fig. 2.10) that carries a uniform surface charge σ . What does your
formula give in the limit R → ∞? Also check the case z � R.

Problem 2.7 Find the electric field a distance z from the center of a spherical surface!
of radius R (Fig. 2.11) that carries a uniform charge density σ . Treat the case z < R
(inside) as well as z > R (outside). Express your answers in terms of the total charge
q on the sphere. [Hint: Use the law of cosines to write r in terms of R and θ . Be
sure to take the positive square root:

√
R2 + z2 − 2Rz = (R − z) if R > z, but it’s

(z − R) if R < z.]

Problem 2.8 Use your result in Prob. 2.7 to find the field inside and outside a solid
sphere of radius R that carries a uniform volume charge density ρ. Express your
answers in terms of the total charge of the sphere, q . Draw a graph of |E| as a
function of the distance from the center.
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2.2 DIVERGENCE AND CURL OF ELECTROSTATIC FIELDS

2.2.1 Field Lines, Flux, and Gauss’s Law

In principle, we are done with the subject of electrostatics. Equation 2.8 tells us
how to compute the field of a charge distribution, and Eq. 2.3 tells us what the
force on a charge Q placed in this field will be. Unfortunately, as you may have
discovered in working Prob. 2.7, the integrals involved in computing E can be
formidable, even for reasonably simple charge distributions. Much of the rest of
electrostatics is devoted to assembling a bag of tools and tricks for avoiding these
integrals. It all begins with the divergence and curl of E. I shall calculate the
divergence of E directly from Eq. 2.8, in Sect. 2.2.2, but first I want to show you
a more qualitative, and perhaps more illuminating, intuitive approach.

Let’s begin with the simplest possible case: a single point charge q, situated at
the origin:

E(r) = 1

4πε0

q

r2
r̂. (2.10)

To get a “feel” for this field, I might sketch a few representative vectors, as in
Fig. 2.12a. Because the field falls off like 1/r2, the vectors get shorter as you go
farther away from the origin; they always point radially outward. But there is a

(a)

E

(b)

E

FIGURE 2.12
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nicer way to represent this field, and that’s to connect up the arrows, to form field
lines (Fig. 2.12b). You might think that I have thereby thrown away information
about the strength of the field, which was contained in the length of the arrows.
But actually I have not. The magnitude of the field is indicated by the density of
the field lines: it’s strong near the center where the field lines are close together,
and weak farther out, where they are relatively far apart.

In truth, the field-line diagram is deceptive, when I draw it on a two-dimensional
surface, for the density of lines passing through a circle of radius r is the total
number divided by the circumference (n/2πr), which goes like (1/r), not (1/r2).
But if you imagine the model in three dimensions (a pincushion with needles
sticking out in all directions), then the density of lines is the total number divided
by the area of the sphere (n/4πr2), which does go like (1/r2).

Such diagrams are also convenient for representing more complicated fields.
Of course, the number of lines you draw depends on how lazy you are (and how
sharp your pencil is), though you ought to include enough to get an accurate sense
of the field, and you must be consistent: If q gets 8 lines, then 2q deserves 16. And
you must space them fairly—they emanate from a point charge symmetrically in
all directions. Field lines begin on positive charges and end on negative ones;
they cannot simply terminate in midair,4 though they may extend out to infinity.
Moreover, field lines can never cross—at the intersection, the field would have
two different directions at once! With all this in mind, it is easy to sketch the field
of any simple configuration of point charges: Begin by drawing the lines in the
neighborhood of each charge, and then connect them up or extend them to infinity
(Figs. 2.13 and 2.14).

In this model, the flux of E through a surface S,

	E ≡
∫

S
E · da, (2.11)

+ −

Opposite charges

FIGURE 2.13

4If they did, the divergence of E would not be zero, and (as we shall soon see) that cannot happen in
empty space.
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+ +

Equal charges

FIGURE 2.14

is a measure of the “number of field lines” passing through S. I put this in quotes
because of course we can only draw a representative sample of the field lines—the
total number would be infinite. But for a given sampling rate the flux is propor-
tional to the number of lines drawn, because the field strength, remember, is pro-
portional to the density of field lines (the number per unit area), and hence E · da
is proportional to the number of lines passing through the infinitesimal area da.
(The dot product picks out the component of da along the direction of E, as indi-
cated in Fig. 2.15. It is the area in the plane perpendicular to E that we have in
mind when we say that the density of field lines is the number per unit area.)

This suggests that the flux through any closed surface is a measure of the
total charge inside. For the field lines that originate on a positive charge must
either pass out through the surface or else terminate on a negative charge inside
(Fig. 2.16a). On the other hand, a charge outside the surface will contribute
nothing to the total flux, since its field lines pass in one side and out the other
(Fig. 2.16b). This is the essence of Gauss’s law. Now let’s make it quantitative.

In the case of a point charge q at the origin, the flux of E through a spherical
surface of radius r is

∮
E · da =

∫
1

4πε0

( q

r2
r̂
)

· (r2 sin θ dθ dφ r̂) = 1

ε0
q. (2.12)

da

E

FIGURE 2.15
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(a)

2q q

E

(b)

E
q

FIGURE 2.16

Notice that the radius of the sphere cancels out, for while the surface area goes
up as r2, the field goes down as 1/r2, so the product is constant. In terms of the
field-line picture, this makes good sense, since the same number of field lines pass
through any sphere centered at the origin, regardless of its size. In fact, it didn’t
have to be a sphere—any closed surface, whatever its shape, would be pierced by
the same number of field lines. Evidently the flux through any surface enclosing
the charge is q/ε0.

Now suppose that instead of a single charge at the origin, we have a bunch of
charges scattered about. According to the principle of superposition, the total field
is the (vector) sum of all the individual fields:

E =
n∑

i=1

Ei .

The flux through a surface that encloses them all is∮
E · da =

n∑
i=1

(∮
Ei · da

)
=

n∑
i=1

(
1

ε0
qi

)

For any closed surface, then,

∮
E · da = 1

ε0
Qenc, (2.13)

where Qenc is the total charge enclosed within the surface. This is the quantita-
tive statement of Gauss’s law. Although it contains no information that was not
already present in Coulomb’s law plus the principle of superposition, it is of al-
most magical power, as you will see in Sect. 2.2.3. Notice that it all hinges on
the 1/r2 character of Coulomb’s law; without that the crucial cancellation of the
r ’s in Eq. 2.12 would not take place, and the total flux of E would depend on the
surface chosen, not merely on the total charge enclosed. Other 1/r2 forces (I am
thinking particularly of Newton’s law of universal gravitation) will obey “Gauss’s
laws” of their own, and the applications we develop here carry over directly.
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As it stands, Gauss’s law is an integral equation, but we can easily turn it into
a differential one, by applying the divergence theorem:∮

S

E · da =
∫
V

(∇ · E) dτ.

Rewriting Qenc in terms of the charge density ρ, we have

Qenc =
∫
V

ρ dτ.

So Gauss’s law becomes ∫
V

(∇ · E) dτ =
∫
V

(
ρ

ε0

)
dτ.

And since this holds for any volume, the integrands must be equal:

∇ · E = 1

ε0
ρ. (2.14)

Equation 2.14 carries the same message as Eq. 2.13; it is Gauss’s law in differen-
tial form. The differential version is tidier, but the integral form has the advantage
in that it accommodates point, line, and surface charges more naturally.

Problem 2.9 Suppose the electric field in some region is found to be E = kr 3r̂, in
spherical coordinates (k is some constant).

(a) Find the charge density ρ.

(b) Find the total charge contained in a sphere of radius R, centered at the origin.
(Do it two different ways.)

Problem 2.10 A charge q sits at the back corner of a cube, as shown in Fig. 2.17.
What is the flux of E through the shaded side?

q

FIGURE 2.17
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2.2.2 The Divergence of E

Let’s go back, now, and calculate the divergence of E directly from Eq. 2.8:

E(r) = 1

4πε0

∫
all space

r̂
r2 ρ(r′) dτ ′. (2.15)

(Originally the integration was over the volume occupied by the charge, but I may
as well extend it to all space, since ρ = 0 in the exterior region anyway.) Noting
that the r-dependence is contained in r = r − r′, we have

∇ · E = 1

4πε0

∫
∇ ·

( r̂
r2

)
ρ(r′) dτ ′.

This is precisely the divergence we calculated in Eq. 1.100:

∇ ·
( r̂
r2

)
= 4πδ3(r).

Thus

∇ · E = 1

4πε0

∫
4πδ3(r − r′)ρ(r′) dτ ′ = 1

ε0
ρ(r), (2.16)

which is Gauss’s law in differential form (Eq. 2.14). To recover the integral form
(Eq. 2.13), we run the previous argument in reverse—integrate over a volume and
apply the divergence theorem:

∫
V

∇ · E dτ =
∮
S

E · da = 1

ε0

∫
V

ρ dτ = 1

ε0
Qenc.

2.2.3 Applications of Gauss’s Law

I must interrupt the theoretical development at this point to show you the
extraordinary power of Gauss’s law, in integral form. When symmetry permits,
it affords by far the quickest and easiest way of computing electric fields. I’ll
illustrate the method with a series of examples.

Example 2.3. Find the field outside a uniformly charged solid sphere of radius
R and total charge q.

Solution
Imagine a spherical surface at radius r > R (Fig. 2.18); this is called a Gaussian
surface in the trade. Gauss’s law says that

∮
S

E · da = 1

ε0
Qenc,
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and in this case Qenc = q. At first glance this doesn’t seem to get us very far,
because the quantity we want (E) is buried inside the surface integral. Luckily,
symmetry allows us to extract E from under the integral sign: E certainly points
radially outward,5 as does da, so we can drop the dot product,

∫
S

E · da =
∫
S

|E| da,

R

r
Gaussian
surface

FIGURE 2.18

and the magnitude of E is constant over the Gaussian surface, so it comes outside
the integral: ∫

S

|E| da = |E|
∫
S

da = |E| 4πr2.

Thus
|E| 4πr2 = 1

ε0
q,

or
E = 1

4πε0

q

r2
r̂.

Notice a remarkable feature of this result: The field outside the sphere is exactly
the same as it would have been if all the charge had been concentrated at the
center.

Gauss’s law is always true, but it is not always useful. If ρ had not been uniform
(or, at any rate, not spherically symmetrical), or if I had chosen some other shape
for my Gaussian surface, it would still have been true that the flux of E is q/ε0, but
E would not have pointed in the same direction as da, and its magnitude would
not have been constant over the surface, and without that I cannot get |E| outside

5If you doubt that E is radial, consider the alternative. Suppose, say, that it points due east, at the
“equator.” But the orientation of the equator is perfectly arbitrary—nothing is spinning here, so there
is no natural “north-south” axis—any argument purporting to show that E points east could just as
well be used to show it points west, or north, or any other direction. The only unique direction on a
sphere is radial.
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Gaussian surface

FIGURE 2.19

Gaussian
pillbox

FIGURE 2.20

of the integral. Symmetry is crucial to this application of Gauss’s law. As far as I
know, there are only three kinds of symmetry that work:

1. Spherical symmetry. Make your Gaussian surface a concentric sphere.

2. Cylindrical symmetry. Make your Gaussian surface a coaxial cylinder
(Fig. 2.19).

3. Plane symmetry. Use a Gaussian “pillbox” that straddles the surface
(Fig. 2.20).

Although (2) and (3) technically require infinitely long cylinders, and planes ex-
tending to infinity, we shall often use them to get approximate answers for “long”
cylinders or “large” planes, at points far from the edges.

Example 2.4. A long cylinder (Fig. 2.21) carries a charge density that is propor-
tional to the distance from the axis: ρ = ks, for some constant k. Find the electric
field inside this cylinder.

Solution
Draw a Gaussian cylinder of length l and radius s. For this surface, Gauss’s law
states: ∮

S

E · da = 1

ε0
Qenc.

The enclosed charge is

Qenc =
∫

ρ dτ =
∫

(ks ′)(s ′ ds ′ dφ dz) = 2πkl
∫ s

0
s ′2 ds ′ = 2

3πkls3.

E

s

Gaussian
surface

l

E

FIGURE 2.21
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(I used the volume element appropriate to cylindrical coordinates, Eq. 1.78, and
integrated φ from 0 to 2π , dz from 0 to l. I put a prime on the integration variable
s ′, to distinguish it from the radius s of the Gaussian surface.)

Now, symmetry dictates that E must point radially outward, so for the curved
portion of the Gaussian cylinder we have:∫

E · da =
∫

|E| da = |E|
∫

da = |E| 2πsl,

while the two ends contribute nothing (here E is perpendicular to da). Thus,

|E| 2πsl = 1

ε0

2

3
πkls3,

or, finally,

E = 1

3ε0
ks2ŝ.

Example 2.5. An infinite plane carries a uniform surface charge σ . Find its
electric field.

Solution
Draw a “Gaussian pillbox,” extending equal distances above and below the plane
(Fig. 2.22). Apply Gauss’s law to this surface:∮

E · da = 1

ε0
Qenc.

In this case, Qenc = σ A, where A is the area of the lid of the pillbox. By symme-
try, E points away from the plane (upward for points above, downward for points
below). So the top and bottom surfaces yield∫

E · da = 2A|E|,

whereas the sides contribute nothing. Thus

2A |E| = 1

ε0
σ A,

E

E

A

FIGURE 2.22
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or
E = σ

2ε0
n̂, (2.17)

where n̂ is a unit vector pointing away from the surface. In Prob. 2.6, you obtained
this same result by a much more laborious method.

It seems surprising, at first, that the field of an infinite plane is independent of
how far away you are. What about the 1/r2 in Coulomb’s law? The point is that as
you move farther and farther away from the plane, more and more charge comes
into your “field of view” (a cone shape extending out from your eye), and this
compensates for the diminishing influence of any particular piece. The electric
field of a sphere falls off like 1/r2; the electric field of an infinite line falls off like
1/r ; and the electric field of an infinite plane does not fall off at all (you cannot
escape from an infinite plane).

Although the direct use of Gauss’s law to compute electric fields is limited to
cases of spherical, cylindrical, and planar symmetry, we can put together combi-
nations of objects possessing such symmetry, even though the arrangement as a
whole is not symmetrical. For example, invoking the principle of superposition,
we could find the field in the vicinity of two uniformly charged parallel cylinders,
or a sphere near an infinite charged plane.

Example 2.6. Two infinite parallel planes carry equal but opposite uniform
charge densities ±σ (Fig. 2.23). Find the field in each of the three regions: (i)
to the left of both, (ii) between them, (iii) to the right of both.

Solution
The left plate produces a field (1/2ε0)σ , which points away from it (Fig. 2.24)—
to the left in region (i) and to the right in regions (ii) and (iii). The right plate,
being negatively charged, produces a field (1/2ε0)σ , which points toward it—to
the right in regions (i) and (ii) and to the left in region (iii). The two fields cancel
in regions (i) and (iii); they conspire in region (ii). Conclusion: The field between
the plates is σ/ε0, and points to the right; elsewhere it is zero.

(i) (ii) (iii)

+σ −σ

FIGURE 2.23

(i) (ii) (iii)

+σ −σ

E− E− E−

E+ E+ E+

FIGURE 2.24
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Problem 2.11 Use Gauss’s law to find the electric field inside and outside a spherical
shell of radius R that carries a uniform surface charge density σ . Compare your
answer to Prob. 2.7.

Problem 2.12 Use Gauss’s law to find the electric field inside a uniformly charged
solid sphere (charge density ρ). Compare your answer to Prob. 2.8.

Problem 2.13 Find the electric field a distance s from an infinitely long straight
wire that carries a uniform line charge λ. Compare Eq. 2.9.

Problem 2.14 Find the electric field inside a sphere that carries a charge density pro-
portional to the distance from the origin, ρ = kr , for some constant k. [Hint: This
charge density is not uniform, and you must integrate to get the enclosed charge.]

Problem 2.15 A thick spherical shell carries charge density

ρ = k

r 2
(a ≤ r ≤ b)

(Fig. 2.25). Find the electric field in the three regions: (i) r < a, (ii) a < r < b, (iii)
r > b. Plot |E| as a function of r , for the case b = 2a.

Problem 2.16 A long coaxial cable (Fig. 2.26) carries a uniform volume charge
density ρ on the inner cylinder (radius a), and a uniform surface charge density on
the outer cylindrical shell (radius b). This surface charge is negative and is of just
the right magnitude that the cable as a whole is electrically neutral. Find the electric
field in each of the three regions: (i) inside the inner cylinder (s < a), (ii) between
the cylinders (a < s < b), (iii) outside the cable (s > b). Plot |E| as a function of s.

a

b

FIGURE 2.25

a
b

+

−

FIGURE 2.26

Problem 2.17 An infinite plane slab, of thickness 2d, carries a uniform volume
charge density ρ (Fig. 2.27). Find the electric field, as a function of y, where y = 0
at the center. Plot E versus y, calling E positive when it points in the +y direction
and negative when it points in the −y direction.

Problem 2.18 Two spheres, each of radius R and carrying uniform volume•
charge densities +ρ and −ρ, respectively, are placed so that they partially overlap
(Fig. 2.28). Call the vector from the positive center to the negative center d. Show
that the field in the region of overlap is constant, and find its value. [Hint: Use the
answer to Prob. 2.12.]
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2d

x

y

z

FIGURE 2.27

d

+

−

FIGURE 2.28

2.2.4 The Curl of E

I’ll calculate the curl of E, as I did the divergence in Sect. 2.2.1, by studying first
the simplest possible configuration: a point charge at the origin. In this case

E = 1

4πε0

q

r2
r̂.

Now, a glance at Fig. 2.12 should convince you that the curl of this field has to
be zero, but I suppose we ought to come up with something a little more rigorous
than that. What if we calculate the line integral of this field from some point a to
some other point b (Fig. 2.29):

∫ b

a
E · dl.

In spherical coordinates, dl = dr r̂ + r dθ θ̂ + r sin θ dφ φ̂, so

E · dl = 1

4πε0

q

r2
dr.

z

x

q

rb

ra
y

b

a

FIGURE 2.29



78 Chapter 2 Electrostatics

Therefore,

∫ b

a
E · dl = 1

4πε0

∫ b

a

q

r2
dr = −1

4πε0

q

r

∣∣∣∣
rb

ra

= 1

4πε0

(
q

ra
− q

rb

)
, (2.18)

where ra is the distance from the origin to the point a and rb is the distance to b.
The integral around a closed path is evidently zero (for then ra = rb):

∮
E · dl = 0, (2.19)

and hence, applying Stokes’ theorem,

∇ × E = 0. (2.20)

Now, I proved Eqs. 2.19 and 2.20 only for the field of a single point charge
at the origin, but these results make no reference to what is, after all, a perfectly
arbitrary choice of coordinates; they hold no matter where the charge is located.
Moreover, if we have many charges, the principle of superposition states that the
total field is a vector sum of their individual fields:

E = E1 + E2 + . . . ,

so

∇ × E = ∇ × (E1 + E2 + . . .) = (∇ × E1) + (∇ × E2) + . . . = 0.

Thus, Eqs. 2.19 and 2.20 hold for any static charge distribution whatever.

Problem 2.19 Calculate ∇ × E directly from Eq. 2.8, by the method of Sect. 2.2.2.
Refer to Prob. 1.63 if you get stuck.

2.3 ELECTRIC POTENTIAL

2.3.1 Introduction to Potential

The electric field E is not just any old vector function. It is a very special kind of
vector function: one whose curl is zero. E = yx̂, for example, could not possibly
be an electrostatic field; no set of charges, regardless of their sizes and positions,
could ever produce such a field. We’re going to exploit this special property of
electric fields to reduce a vector problem (finding E) to a much simpler scalar
problem. The first theorem in Sect. 1.6.2 asserts that any vector whose curl is zero
is equal to the gradient of some scalar. What I’m going to do now amounts to a
proof of that claim, in the context of electrostatics.
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b

a

(i)

(ii)

FIGURE 2.30

Because ∇ × E = 0, the line integral of E around any closed loop is zero (that
follows from Stokes’ theorem). Because

∮
E · dl = 0, the line integral of E from

point a to point b is the same for all paths (otherwise you could go out along path
(i) and return along path (ii)—Fig. 2.30—and obtain

∮
E · dl �= 0). Because the

line integral is independent of path, we can define a function6

V (r) ≡ −
∫ r

O
E · dl. (2.21)

Here O is some standard reference point on which we have agreed beforehand; V
then depends only on the point r. It is called the electric potential.

The potential difference between two points a and b is

V (b) − V (a) = −
∫ b

O
E · dl +

∫ a

O
E · dl

= −
∫ b

O
E · dl −

∫ O

a
E · dl = −

∫ b

a
E · dl. (2.22)

Now, the fundamental theorem for gradients states that

V (b) − V (a) =
∫ b

a
(∇V ) · dl,

so
∫ b

a
(∇V ) · dl = −

∫ b

a
E · dl.

Since, finally, this is true for any points a and b, the integrands must be equal:

E = −∇V . (2.23)

6To avoid any possible ambiguity, I should perhaps put a prime on the integration variable:

V (r) = −
∫ r

O
E(r′) · dl′.

But this makes for cumbersome notation, and I prefer whenever possible to reserve the primes for
source points. However, when (as in Ex. 2.7) we calculate such integrals explicitly, I will put in the
primes.
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Equation 2.23 is the differential version of Eq. 2.21; it says that the electric field
is the gradient of a scalar potential, which is what we set out to prove.

Notice the subtle but crucial role played by path independence (or, equiva-
lently, the fact that ∇ × E = 0) in this argument. If the line integral of E depended
on the path taken, then the “definition” of V , Eq. 2.21, would be nonsense. It sim-
ply would not define a function, since changing the path would alter the value of
V (r). By the way, don’t let the minus sign in Eq. 2.23 distract you; it carries over
from Eq. 2.21 and is largely a matter of convention.

Problem 2.20 One of these is an impossible electrostatic field. Which one?

(a) E = k[xy x̂ + 2yz ŷ + 3xz ẑ];
(b) E = k[y2 x̂ + (2xy + z2) ŷ + 2yz ẑ].
Here k is a constant with the appropriate units. For the possible one, find the poten-
tial, using the origin as your reference point. Check your answer by computing ∇V .
[Hint: You must select a specific path to integrate along. It doesn’t matter what path
you choose, since the answer is path-independent, but you simply cannot integrate
unless you have a definite path in mind.]

2.3.2 Comments on Potential

(i) The name. The word “potential” is a hideous misnomer because it inevitably
reminds you of potential energy. This is particularly insidious, because there
is a connection between “potential” and “potential energy,” as you will see in
Sect. 2.4. I’m sorry that it is impossible to escape this word. The best I can do is
to insist once and for all that “potential” and “potential energy” are completely
different terms and should, by all rights, have different names. Incidentally, a sur-
face over which the potential is constant is called an equipotential.

(ii) Advantage of the potential formulation. If you know V , you can eas-
ily get E—just take the gradient: E = −∇V . This is quite extraordinary when
you stop to think about it, for E is a vector quantity (three components), but V
is a scalar (one component). How can one function possibly contain all the in-
formation that three independent functions carry? The answer is that the three
components of E are not really as independent as they look; in fact, they are ex-
plicitly interrelated by the very condition we started with, ∇ × E = 0. In terms of
components,

∂ Ex

∂y
= ∂ Ey

∂x
,

∂ Ez

∂y
= ∂ Ey

∂z
,

∂ Ex

∂z
= ∂ Ez

∂x
.

This brings us back to my observation at the beginning of Sect. 2.3.1: E is a very
special kind of vector. What the potential formulation does is to exploit this feature
to maximum advantage, reducing a vector problem to a scalar one, in which there
is no need to fuss with components.
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(iii) The reference point O. There is an essential ambiguity in the definition of
potential, since the choice of reference point O was arbitrary. Changing reference
points amounts to adding a constant K to the potential:

V ′(r) = −
∫ r

O′
E · dl = −

∫ O

O′
E · dl −

∫ r

O
E · dl = K + V (r),

where K is the line integral of E from the old reference point O to the new one O′.
Of course, adding a constant to V will not affect the potential difference between
two points:

V ′(b) − V ′(a) = V (b) − V (a),

since the K ’s cancel out. (Actually, it was already clear from Eq. 2.22 that the
potential difference is independent of O, because it can be written as the line
integral of E from a to b, with no reference to O.) Nor does the ambiguity affect
the gradient of V :

∇V ′ = ∇V,

since the derivative of a constant is zero. That’s why all such V ’s, differing only
in their choice of reference point, correspond to the same field E.

Potential as such carries no real physical significance, for at any given point
we can adjust its value at will by a suitable relocation of O. In this sense, it is
rather like altitude: If I ask you how high Denver is, you will probably tell me
its height above sea level, because that is a convenient and traditional reference
point. But we could as well agree to measure altitude above Washington, D.C.,
or Greenwich, or wherever. That would add (or, rather, subtract) a fixed amount
from all our sea-level readings, but it wouldn’t change anything about the real
world. The only quantity of intrinsic interest is the difference in altitude between
two points, and that is the same whatever your reference level.

Having said this, however, there is a “natural” spot to use for O in
electrostatics—analogous to sea level for altitude—and that is a point infinitely
far from the charge. Ordinarily, then, we “set the zero of potential at infinity.”
(Since V (O) = 0, choosing a reference point is equivalent to selecting a place
where V is to be zero.) But I must warn you that there is one special circum-
stance in which this convention fails: when the charge distribution itself extends
to infinity. The symptom of trouble, in such cases, is that the potential blows up.
For instance, the field of a uniformly charged plane is (σ/2ε0)n̂, as we found in
Ex. 2.5; if we naïvely put O = ∞, then the potential at height z above the plane
becomes

V (z) = −
∫ z

∞
1

2ε0
σ dz = − 1

2ε0
σ(z − ∞).

The remedy is simply to choose some other reference point (in this example you
might use a point on the plane). Notice that the difficulty occurs only in textbook
problems; in “real life” there is no such thing as a charge distribution that goes on
forever, and we can always use infinity as our reference point.
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(iv) Potential obeys the superposition principle. The original superposition
principle pertains to the force on a test charge Q. It says that the total force on Q
is the vector sum of the forces attributable to the source charges individually:

F = F1 + F2 + . . .

Dividing through by Q, we see that the electric field, too, obeys the superposition
principle:

E = E1 + E2 + . . .

Integrating from the common reference point to r, it follows that the potential also
satisfies such a principle:

V = V1 + V2 + . . .

That is, the potential at any given point is the sum of the potentials due to all the
source charges separately. Only this time it is an ordinary sum, not a vector sum,
which makes it a lot easier to work with.

(v) Units of Potential. In our units, force is measured in newtons and charge
in coulombs, so electric fields are in newtons per coulomb. Accordingly, potential
is newton-meters per coulomb, or joules per coulomb. A joule per coulomb is
a volt.

Example 2.7. Find the potential inside and outside a spherical shell of radius R
(Fig. 2.31) that carries a uniform surface charge. Set the reference point at infinity.

R

P
r

FIGURE 2.31

Solution
From Gauss’s law, the field outside is

E = 1

4πε0

q

r2
r̂,

where q is the total charge on the sphere. The field inside is zero. For points
outside the sphere (r > R),

V (r) = −
∫ r

O
E · dl = −1

4πε0

∫ r

∞
q

r ′2 dr ′ = 1

4πε0

q

r ′

∣∣∣∣
r

∞
= 1

4πε0

q

r
.
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To find the potential inside the sphere (r < R), we must break the integral into
two pieces, using in each region the field that prevails there:

V (r) = −1

4πε0

∫ R

∞
q

r ′2 dr ′ −
∫ r

R
(0) dr ′ = 1

4πε0

q

r ′

∣∣∣∣
R

∞
+ 0 = 1

4πε0

q

R
.

Notice that the potential is not zero inside the shell, even though the field is.
V is a constant in this region, to be sure, so that ∇V = 0—that’s what matters.
In problems of this type, you must always work your way in from the reference
point; that’s where the potential is “nailed down.” It is tempting to suppose that
you could figure out the potential inside the sphere on the basis of the field there
alone, but this is false: The potential inside the sphere is sensitive to what’s going
on outside the sphere as well. If I placed a second uniformly charged shell out at
radius R′ > R, the potential inside R would change, even though the field would
still be zero. Gauss’s law guarantees that charge exterior to a given point (that
is, at larger r ) produces no net field at that point, provided it is spherically or
cylindrically symmetric, but there is no such rule for potential, when infinity is
used as the reference point.

Problem 2.21 Find the potential inside and outside a uniformly charged solid sphere
whose radius is R and whose total charge is q . Use infinity as your reference point.
Compute the gradient of V in each region, and check that it yields the correct field.
Sketch V (r).

Problem 2.22 Find the potential a distance s from an infinitely long straight wire
that carries a uniform line charge λ. Compute the gradient of your potential, and
check that it yields the correct field.

Problem 2.23 For the charge configuration of Prob. 2.15, find the potential at the
center, using infinity as your reference point.

Problem 2.24 For the configuration of Prob. 2.16, find the potential difference
between a point on the axis and a point on the outer cylinder. Note that it is not
necessary to commit yourself to a particular reference point, if you use Eq. 2.22.

2.3.3 Poisson’s Equation and Laplace’s Equation

We found in Sect. 2.3.1 that the electric field can be written as the gradient of a
scalar potential.

E = −∇V .

The question arises: What do the divergence and curl of E,

∇ · E = ρ

ε0
and ∇ × E = 0,
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look like, in terms of V ? Well, ∇ · E = ∇ · (−∇V ) = −∇2V , so, apart from that
persistent minus sign, the divergence of E is the Laplacian of V . Gauss’s law,
then, says

∇2V = − ρ

ε0
. (2.24)

This is known as Poisson’s equation. In regions where there is no charge, so
ρ = 0, Poisson’s equation reduces to Laplace’s equation,

∇2V = 0. (2.25)

We’ll explore this equation more fully in Chapter 3.
So much for Gauss’s law. What about the curl law? This says that

∇ × E = ∇ × (−∇V ) = 0.

But that’s no condition on V —curl of gradient is always zero. Of course, we
used the curl law to show that E could be expressed as the gradient of a scalar,
so it’s not really surprising that this works out: ∇ × E = 0 permits E = −∇V ;
in return, E = −∇V guarantees ∇ × E = 0. It takes only one differential equa-
tion (Poisson’s) to determine V , because V is a scalar; for E we needed two, the
divergence and the curl.

2.3.4 The Potential of a Localized Charge Distribution

I defined V in terms of E (Eq. 2.21). Ordinarily, though, it’s E that we’re looking
for (if we already knew E, there wouldn’t be much point in calculating V ). The
idea is that it might be easier to get V first, and then calculate E by taking the
gradient. Typically, then, we know where the charge is (that is, we know ρ), and
we want to find V . Now, Poisson’s equation relates V and ρ, but unfortunately
it’s “the wrong way around”: it would give us ρ, if we knew V , whereas we want
V , knowing ρ. What we must do, then, is “invert” Poisson’s equation. That’s the
program for this section, although I shall do it by roundabout means, beginning,
as always, with a point charge at the origin.

The electric field is E = (1/4πε0)(1/r2) r̂, and dl = dr r̂ + r dθ θ̂+
r sin θ dφ φ̂ (Eq. 1.68), so

E · dl = 1

4πε0

q

r2
dr.

Setting the reference point at infinity, the potential of a point charge q at the
origin is

V (r) = −
∫ r

O
E · dl = −1

4πε0

∫ r

∞
q

r ′2 dr ′ = 1

4πε0

q

r ′

∣∣∣∣
r

∞
= 1

4πε0

q

r
.

(You see here the advantage of using infinity for the reference point: it kills the
lower limit on the integral.) Notice the sign of V ; presumably the conventional
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FIGURE 2.32

minus sign in the definition (Eq. 2.21) was chosen in order to make the poten-
tial of a positive charge come out positive. It is useful to remember that regions
of positive charge are potential “hills,” regions of negative charge are potential
“valleys,” and the electric field points “downhill,” from plus toward minus.

In general, the potential of a point charge q is

V (r) = 1

4πε0

q

r , (2.26)

where r, as always, is the distance from q to r (Fig. 2.32). Invoking the superpo-
sition principle, then, the potential of a collection of charges is

V (r) = 1

4πε0

n∑
i=1

qi

ri
, (2.27)

or, for a continuous distribution,

V (r) = 1

4πε0

∫
1

r dq. (2.28)

In particular, for a volume charge, it’s

V (r) = 1

4πε0

∫
ρ(r′)
r dτ ′. (2.29)

This is the equation we were looking for, telling us how to compute V when we
know ρ; it is, if you like, the “solution” to Poisson’s equation, for a localized
charge distribution.7 Compare Eq. 2.29 with the corresponding formula for the
electric field in terms of ρ (Eq. 2.8):

E(r) = 1

4πε0

∫
ρ(r′)
r2 r̂ dτ ′.

The main point to notice is that the pesky unit vector r̂ is gone, so there is no need
to fuss with components. The potentials of line and surface charges are

V = 1

4πε0

∫
λ(r′)
r dl ′ and V = 1

4πε0

∫
σ(r′)
r da′. (2.30)

I should warn you that everything in this section is predicated on the assump-
tion that the reference point is at infinity. This is hardly apparent in Eq. 2.29, but
7Equation 2.29 is an example of the Helmholtz theorem (Appendix B).
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remember that we got that equation from the potential of a point charge at the ori-
gin, (1/4πε0)(q/r), which is valid only when O = ∞. If you try to apply these
formulas to one of those artificial problems in which the charge itself extends to
infinity, the integral will diverge.

Example 2.8. Find the potential of a uniformly charged spherical shell of radius
R (Fig. 2.33).

Solution
This is the same problem we solved in Ex. 2.7, but this time let’s do it using
Eq. 2.30:

V (r) = 1

4πε0

∫
σ

r da′.

We might as well set the point P on the z axis and use the law of cosines to
express r:

r2 = R2 + z2 − 2Rz cos θ ′.

x

z

y

z

P

R

θ′
r

FIGURE 2.33

An element of surface area on the sphere is R2 sin θ ′ dθ ′ dφ′, so

4πε0V (z) = σ

∫
R2 sin θ ′ dθ ′ dφ′

√
R2 + z2 − 2Rz cos θ ′

= 2π R2σ

∫ π

0

sin θ ′
√

R2 + z2 − 2Rz cos θ ′ dθ ′

= 2π R2σ

(
1

Rz

√
R2 + z2 − 2Rz cos θ ′

)∣∣∣∣
π

0

= 2π Rσ

z

(√
R2 + z2 + 2Rz −

√
R2 + z2 − 2Rz

)

= 2π Rσ

z

[√
(R + z)2 − √

(R − z)2
]
.
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At this stage, we must be very careful to take the positive root. For points outside
the sphere, z is greater than R, and hence

√
(R − z)2 = z − R; for points inside

the sphere,
√

(R − z)2 = R − z. Thus,

V (z) = Rσ

2ε0z
[(R + z) − (z − R)] = R2σ

ε0z
, outside;

V (z) = Rσ

2ε0z
[(R + z) − (R − z)] = Rσ

ε0
, inside.

In terms of r and the total charge on the shell, q = 4π R2σ ,

V (r) =

⎧⎪⎪⎨
⎪⎪⎩

1

4πε0

q

r
(r ≥ R),

1

4πε0

q

R
(r ≤ R).

Of course, in this particular case, it was easier to get V by using Eq. 2.21 than
Eq. 2.30, because Gauss’s law gave us E with so little effort. But if you compare
Ex. 2.8 with Prob. 2.7, you will appreciate the power of the potential formulation.

Problem 2.25 Using Eqs. 2.27 and 2.30, find the potential at a distance z above the
center of the charge distributions in Fig. 2.34. In each case, compute E = −∇V , and
compare your answers with Ex. 2.1, Ex. 2.2, and Prob. 2.6, respectively. Suppose
that we changed the right-hand charge in Fig. 2.34a to −q; what then is the potential
at P? What field does that suggest? Compare your answer to Prob. 2.2, and explain
carefully any discrepancy.

z

P

+q +qd

(a) Two point charges

z

P

2L

(b) Uniform line charge

λ

P

z

(c) Uniform surface charge

Rσ

FIGURE 2.34

Problem 2.26 A conical surface (an empty ice-cream cone) carries a uniform sur-
face charge σ . The height of the cone is h, as is the radius of the top. Find the
potential difference between points a (the vertex) and b (the center of the top).

Problem 2.27 Find the potential on the axis of a uniformly charged solid cylinder,
a distance z from the center. The length of the cylinder is L , its radius is R, and
the charge density is ρ. Use your result to calculate the electric field at this point.
(Assume that z > L/2.)
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Problem 2.28 Use Eq. 2.29 to calculate the potential inside a uniformly charged
solid sphere of radius R and total charge q. Compare your answer to Prob. 2.21.

Problem 2.29 Check that Eq. 2.29 satisfies Poisson’s equation, by applying the
Laplacian and using Eq. 1.102.

2.3.5 Boundary Conditions

In the typical electrostatic problem you are given a source charge distribution
ρ, and you want to find the electric field E it produces. Unless the symmetry
of the problem allows a solution by Gauss’s law, it is generally to your advan-
tage to calculate the potential first, as an intermediate step. These are the three
fundamental quantities of electrostatics: ρ, E, and V . We have, in the course
of our discussion, derived all six formulas interrelating them. These equations
are neatly summarized in Fig. 2.35. We began with just two experimental obser-
vations: (1) the principle of superposition—a broad general rule applying to all
electromagnetic forces, and (2) Coulomb’s law—the fundamental law of electro-
statics. From these, all else followed.

You may have noticed, in studying Exs. 2.5 and 2.6, or working problems such
as 2.7, 2.11, and 2.16, that the electric field always undergoes a discontinuity
when you cross a surface charge σ . In fact, it is a simple matter to find the amount
by which E changes at such a boundary. Suppose we draw a wafer-thin Gaussian
pillbox, extending just barely over the edge in each direction (Fig. 2.36). Gauss’s
law says that ∮

S

E · da = 1

ε0
Qenc = 1

ε0
σ A,

where A is the area of the pillbox lid. (If σ varies from point to point or the surface
is curved, we must pick A to be extremely small.) Now, the sides of the pillbox

ρ

EV

E
 =

ρdτ

14πε
0

r 2
r

∇ .E
 =

 ρ/ε
0 ;∇

 ×
 E

 =
 0

V = −  E.dl

V 
=

dτ

1
4π

ε 0
rρ

∇
2 V =

 −ρ
/ε 0

E = −∇V

FIGURE 2.35
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�

E⊥

E⊥
below

above

σ
A

FIGURE 2.36

contribute nothing to the flux, in the limit as the thickness ε goes to zero, so we
are left with

E⊥
above − E⊥

below = 1

ε0
σ, (2.31)

where E⊥
above denotes the component of E that is perpendicular to the surface im-

mediately above, and E⊥
below is the same, only just below the surface. For consis-

tency, we let “upward” be the positive direction for both. Conclusion: The normal
component of E is discontinuous by an amount σ/ε0 at any boundary. In partic-
ular, where there is no surface charge, E⊥ is continuous, as for instance at the
surface of a uniformly charged solid sphere.

The tangential component of E, by contrast, is always continuous. For if we
apply Eq. 2.19, ∮

E · dl = 0,

to the thin rectangular loop of Fig. 2.37, the ends give nothing (as ε → 0), and
the sides give (E‖

abovel − E‖
belowl), so

E‖
above = E‖

below, (2.32)

where E‖ stands for the components of E parallel to the surface. The boundary
conditions on E (Eqs. 2.31 and 2.32) can be combined into a single formula:

Eabove − Ebelow = σ

ε0
n̂, (2.33)

E �
below

E �
above

lσ �

FIGURE 2.37
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b

a
σ

FIGURE 2.38

where n̂ is a unit vector perpendicular to the surface, pointing from “below” to
“above.”8

The potential, meanwhile, is continuous across any boundary (Fig. 2.38), since

Vabove − Vbelow = −
∫ b

a
E · dl;

as the path length shrinks to zero, so too does the integral:

Vabove = Vbelow. (2.34)

However, the gradient of V inherits the discontinuity in E; since E = −∇V ,
Eq. 2.33 implies that

∇Vabove − ∇Vbelow = − 1

ε0
σ n̂, (2.35)

or, more conveniently,

∂Vabove

∂n
− ∂Vbelow

∂n
= − 1

ε0
σ , (2.36)

where

∂V

∂n
= ∇V · n̂ (2.37)

denotes the normal derivative of V (that is, the rate of change in the direction
perpendicular to the surface).

Please note that these boundary conditions relate the fields and potentials just
above and just below the surface. For example, the derivatives in Eq. 2.36 are the
limiting values as we approach the surface from either side.

8Notice that it doesn’t matter which side you call “above” and which “below,” since reversal would
switch the direction of n̂. Incidentally, if you’re only interested in the field due to the (essentially
flat) local patch of surface charge itself, the answer is (σ/2ε0)n̂ immediately above the surface, and
−(σ/2ε0)n̂ immediately below. This follows from Ex. 2.5, for if you are close enough to the patch it
“looks” like an infinite plane. Evidently the entire discontinuity in E is attributable to this local patch
of surface charge.
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Problem 2.30

(a) Check that the results of Exs. 2.5 and 2.6, and Prob. 2.11, are consistent with
Eq. 2.33.

(b) Use Gauss’s law to find the field inside and outside a long hollow cylindrical
tube, which carries a uniform surface charge σ . Check that your result is con-
sistent with Eq. 2.33.

(c) Check that the result of Ex. 2.8 is consistent with boundary conditions 2.34 and
2.36.

2.4 WORK AND ENERGY IN ELECTROSTATICS

2.4.1 The Work It Takes to Move a Charge

Suppose you have a stationary configuration of source charges, and you want to
move a test charge Q from point a to point b (Fig. 2.39). Question: How much
work will you have to do? At any point along the path, the electric force on Q is
F = QE; the force you must exert, in opposition to this electrical force, is −QE.
(If the sign bothers you, think about lifting a brick: gravity exerts a force mg
downward, but you exert a force mg upward. Of course, you could apply an even
greater force—then the brick would accelerate, and part of your effort would be
“wasted” generating kinetic energy. What we’re interested in here is the minimum
force you must exert to do the job.) The work you do is therefore

W =
∫ b

a
F · dl = −Q

∫ b

a
E · dl = Q[V (b) − V (a)].

Notice that the answer is independent of the path you take from a to b; in mechan-
ics, then, we would call the electrostatic force “conservative.” Dividing through
by Q, we have

V (b) − V (a) = W

Q
. (2.38)

In words, the potential difference between points a and b is equal to the work per
unit charge required to carry a particle from a to b. In particular, if you want to
bring Q in from far away and stick it at point r, the work you must do is

W = Q[V (r) − V (∞)],

q1

q2
qi

a

b

Q

FIGURE 2.39
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so, if you have set the reference point at infinity,

W = QV (r). (2.39)

In this sense, potential is potential energy (the work it takes to create the system)
per unit charge (just as the field is the force per unit charge).

2.4.2 The Energy of a Point Charge Distribution

How much work would it take to assemble an entire collection of point charges?
Imagine bringing in the charges, one by one, from far away (Fig. 2.40). The first
charge, q1, takes no work, since there is no field yet to fight against. Now bring in
q2. According to Eq. 2.39, this will cost you q2V1(r2), where V1 is the potential
due to q1, and r2 is the place we’re putting q2:

W2 = 1

4πε0
q2

(
q1

r12

)

(r12 is the distance between q1 and q2 once they are in position). As you bring in
each charge, nail it down in its final location, so it doesn’t move when you bring
in the next charge. Now bring in q3; this requires work q3V1,2(r3), where V1,2 is
the potential due to charges q1 and q2, namely, (1/4πε0)(q1/r13 + q2/r23). Thus

W3 = 1

4πε0
q3

(
q1

r13
+ q2

r23

)
.

Similarly, the extra work to bring in q4 will be

W4 = 1

4πε0
q4

(
q1

r14
+ q2

r24
+ q3

r34

)
.

The total work necessary to assemble the first four charges, then, is

W = 1

4πε0

(
q1q2

r12
+ q1q3

r13
+ q1q4

r14
+ q2q3

r23
+ q2q4

r24
+ q3q4

r34

)
.

q3

r3

r2

r1q1

q2

r13

r23

r12

FIGURE 2.40
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You see the general rule: Take the product of each pair of charges, divide by
their separation distance, and add it all up:

W = 1

4πε0

n∑
i=1

n∑
j>i

qi q j

ri j
. (2.40)

The stipulation j > i is to remind you not to count the same pair twice. A nicer
way to accomplish this is intentionally to count each pair twice, and then divide
by 2:

W = 1

8πε0

n∑
i=1

n∑
j �=i

qi q j

ri j
(2.41)

(we must still avoid i = j , of course). Notice that in this form the answer plainly
does not depend on the order in which you assemble the charges, since every pair
occurs in the sum.

Finally, let’s pull out the factor qi :

W = 1

2

n∑
i=1

qi

⎛
⎝ n∑

j �=i

1

4πε0

q j

ri j

⎞
⎠ .

The term in parentheses is the potential at point ri (the position of qi ) due to all
the other charges—all of them, now, not just the ones that were present at some
stage during the assembly. Thus,

W = 1

2

n∑
i=1

qi V (ri ). (2.42)

That’s how much work it takes to assemble a configuration of point charges; it’s
also the amount of work you’d get back if you dismantled the system. In the
meantime, it represents energy stored in the configuration (“potential” energy, if
you insist, though for obvious reasons I prefer to avoid that word in this context).

Problem 2.31

(a) Three charges are situated at the corners of a square (side a), as shown in
Fig. 2.41. How much work does it take to bring in another charge, +q , from
far away and place it in the fourth corner?

(b) How much work does it take to assemble the whole configuration of four
charges?

−q

+q

a

a −q

FIGURE 2.41
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Problem 2.32 Two positive point charges, qA and qB (masses m A and m B) are at
rest, held together by a massless string of length a. Now the string is cut, and the
particles fly off in opposite directions. How fast is each one going, when they are
far apart?

Problem 2.33 Consider an infinite chain of point charges, ±q (with alternating
signs), strung out along the x axis, each a distance a from its nearest neighbors.
Find the work per particle required to assemble this system. [Partial Answer:
−αq2/(4πε0a), for some dimensionless number α; your problem is to determine α.
It is known as the Madelung constant. Calculating the Madelung constant for
2- and 3-dimensional arrays is much more subtle and difficult.]

2.4.3 The Energy of a Continuous Charge Distribution

For a volume charge density ρ, Eq. 2.42 becomes

W = 1

2

∫
ρV dτ. (2.43)

(The corresponding integrals for line and surface charges would be
∫

λV dl and∫
σ V da.) There is a lovely way to rewrite this result, in which ρ and V are

eliminated in favor of E. First use Gauss’s law to express ρ in terms of E:

ρ = ε0∇ · E, so W = ε0

2

∫
(∇ · E)V dτ.

Now use integration by parts (Eq. 1.59) to transfer the derivative from E to V :

W = ε0

2

[
−
∫

E · (∇V ) dτ +
∮

V E · da
]

.

But ∇V = −E, so

W = ε0

2

⎛
⎝∫

V

E2 dτ +
∮
S

V E · da

⎞
⎠ . (2.44)

But what volume is this we’re integrating over? Let’s go back to the formula
we started with, Eq. 2.43. From its derivation, it is clear that we should integrate
over the region where the charge is located. But actually, any larger volume would
do just as well: The “extra” territory we throw in will contribute nothing to the
integral, since ρ = 0 out there. With this in mind, we return to Eq. 2.44. What
happens here, as we enlarge the volume beyond the minimum necessary to trap
all the charge? Well, the integral of E2 can only increase (the integrand being
positive); evidently the surface integral must decrease correspondingly to leave
the sum intact. (In fact, at large distances from the charge, E goes like 1/r2 and V
like 1/r , while the surface area grows like r2; roughly speaking, then, the surface
integral goes down like 1/r .) Please understand: Eq. 2.44 gives you the correct
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energy W , whatever volume you use (as long as it encloses all the charge), but
the contribution from the volume integral goes up, and that of the surface integral
goes down, as you take larger and larger volumes. In particular, why not integrate
over all space? Then the surface integral goes to zero, and we are left with

W = ε0

2

∫
E2 dτ (all space). (2.45)

Example 2.9. Find the energy of a uniformly charged spherical shell of total
charge q and radius R.

Solution 1
Use Eq. 2.43, in the version appropriate to surface charges:

W = 1

2

∫
σ V da.

Now, the potential at the surface of this sphere is (1/4πε0)q/R (a constant—
Ex. 2.7), so

W = 1

8πε0

q

R

∫
σ da = 1

8πε0

q2

R
.

Solution 2
Use Eq. 2.45. Inside the sphere, E = 0; outside,

E = 1

4πε0

q

r2
r̂, so E2 = q2

(4πε0)2r4
.

Therefore,

Wtot = ε0

2(4πε0)2

∫
outside

(
q2

r4

)
(r2 sin θ dr dθ dφ)

= 1

32π2ε0
q24π

∫ ∞

R

1

r2
dr = 1

8πε0

q2

R
.

Problem 2.34 Find the energy stored in a uniformly charged solid sphere of radius
R and charge q . Do it three different ways:

(a) Use Eq. 2.43. You found the potential in Prob. 2.21.

(b) Use Eq. 2.45. Don’t forget to integrate over all space.

(c) Use Eq. 2.44. Take a spherical volume of radius a. What happens as a → ∞?
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Problem 2.35 Here is a fourth way of computing the energy of a uniformly charged
solid sphere: Assemble it like a snowball, layer by layer, each time bringing in an
infinitesimal charge dq from far away and smearing it uniformly over the surface,
thereby increasing the radius. How much work dW does it take to build up the radius
by an amount dr? Integrate this to find the work necessary to create the entire sphere
of radius R and total charge q .

2.4.4 Comments on Electrostatic Energy

(i) A perplexing “inconsistency.” Equation 2.45 clearly implies that the
energy of a stationary charge distribution is always positive. On the other hand,
Eq. 2.42 (from which 2.45 was in fact derived), can be positive or negative. For
instance, according to Eq. 2.42, the energy of two equal but opposite charges a
distance r apart is −(1/4πε0)(q2/r). What’s gone wrong? Which equation is cor-
rect?

The answer is that both are correct, but they speak to slightly different ques-
tions. Equation 2.42 does not take into account the work necessary to make the
point charges in the first place; we started with point charges and simply found
the work required to bring them together. This is wise strategy, since Eq. 2.45
indicates that the energy of a point charge is in fact infinite:

W = ε0

2(4πε0)2

∫ (
q2

r4

)
(r2 sin θ dr dθ dφ) = q2

8πε0

∫ ∞

0

1

r2
dr = ∞.

Equation 2.45 is more complete, in the sense that it tells you the total energy
stored in a charge configuration, but Eq. 2.42 is more appropriate when you’re
dealing with point charges, because we prefer (for good reason!) to leave out that
portion of the total energy that is attributable to the fabrication of the point charges
themselves. In practice, after all, the point charges (electrons, say) are given to us
ready-made; all we do is move them around. Since we did not put them together,
and we cannot take them apart, it is immaterial how much work the process would
involve. (Still, the infinite energy of a point charge is a recurring source of embar-
rassment for electromagnetic theory, afflicting the quantum version as well as the
classical. We shall return to the problem in Chapter 11.)

Now, you may wonder where the inconsistency crept into an apparently water-
tight derivation. The “flaw” lies between Eqs. 2.42 and 2.43: in the former, V (ri )

represents the potential due to all the other charges but not qi , whereas in the
latter, V (r) is the full potential. For a continuous distribution, there is no distinc-
tion, since the amount of charge right at the point r is vanishingly small, and its
contribution to the potential is zero. But in the presence of point charges you’d
better stick with Eq. 2.42.

(ii) Where is the energy stored? Equations 2.43 and 2.45 offer two different
ways of calculating the same thing. The first is an integral over the charge dis-
tribution; the second is an integral over the field. These can involve completely
different regions. For instance, in the case of the spherical shell (Ex. 2.9) the
charge is confined to the surface, whereas the electric field is everywhere outside
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this surface. Where is the energy, then? Is it stored in the field, as Eq. 2.45 seems
to suggest, or is it stored in the charge, as Eq. 2.43 implies? At the present stage
this is simply an unanswerable question: I can tell you what the total energy is,
and I can provide you with several different ways to compute it, but it is imperti-
nent to worry about where the energy is located. In the context of radiation theory
(Chapter 11) it is useful (and in general relativity it is essential) to regard the
energy as stored in the field, with a density

ε0

2
E2 = energy per unit volume. (2.46)

But in electrostatics one could just as well say it is stored in the charge, with a
density 1

2ρV . The difference is purely a matter of bookkeeping.
(iii) The superposition principle. Because electrostatic energy is quadratic

in the fields, it does not obey a superposition principle. The energy of a compound
system is not the sum of the energies of its parts considered separately—there are
also “cross terms”:

Wtot = ε0

2

∫
E2 dτ = ε0

2

∫
(E1 + E2)

2 dτ

= ε0

2

∫ (
E2

1 + E2
2 + 2E1 · E2

)
dτ

= W1 + W2 + ε0

∫
E1 · E2 dτ. (2.47)

For example, if you double the charge everywhere, you quadruple the total energy.

Problem 2.36 Consider two concentric spherical shells, of radii a and b. Suppose
the inner one carries a charge q, and the outer one a charge −q (both of them
uniformly distributed over the surface). Calculate the energy of this configuration,
(a) using Eq. 2.45, and (b) using Eq. 2.47 and the results of Ex. 2.9.

Problem 2.37 Find the interaction energy (ε0

∫
E1 · E2 dτ in Eq. 2.47) for two point

charges, q1 and q2, a distance a apart. [Hint: Put q1 at the origin and q2 on the z axis;
use spherical coordinates, and do the r integral first.]

2.5 CONDUCTORS

2.5.1 Basic Properties

In an insulator, such as glass or rubber, each electron is on a short leash, attached
to a particular atom. In a metallic conductor, by contrast, one or more electrons
per atom are free to roam. (In liquid conductors such as salt water, it is ions that
do the moving.) A perfect conductor would contain an unlimited supply of free
charges. In real life there are no perfect conductors, but metals come pretty close,
for most purposes.
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From this definition, the basic electrostatic properties of ideal conductors
immediately follow:

(i) E = 0 inside a conductor. Why? Because if there were any field, those
free charges would move, and it wouldn’t be electrostatics any more. Hmm . . .

that’s hardly a satisfactory explanation; maybe all it proves is that you can’t have
electrostatics when conductors are present. We had better examine what happens
when you put a conductor into an external electric field E0 (Fig. 2.42). Initially,
the field will drive any free positive charges to the right, and negative ones to the
left. (In practice, it’s the negative charges—electrons—that do the moving, but
when they depart, the right side is left with a net positive charge—the stationary
nuclei—so it doesn’t really matter which charges move; the effect is the same.)
When they come to the edge of the material, the charges pile up: plus on the right
side, minus on the left. Now, these induced charges produce a field of their own,
E1, which, as you can see from the figure, is in the opposite direction to E0. That’s
the crucial point, for it means that the field of the induced charges tends to cancel
the original field. Charge will continue to flow until this cancellation is complete,
and the resultant field inside the conductor is precisely zero.9 The whole process
is practically instantaneous.

(ii) ρρρ = 0 inside a conductor. This follows from Gauss’s law: ∇ · E = ρ/ε0.
If E is zero, so also is ρ. There is still charge around, but exactly as much plus as
minus, so the net charge density in the interior is zero.

(iii) Any net charge resides on the surface. That’s the only place left.
(iv) A conductor is an equipotential. For if a and b are any two points

within (or at the surface of) a given conductor, V (b) − V (a) = − ∫ b
a E · dl = 0,

and hence V (a) = V (b).
(v) E is perpendicular to the surface, just outside a conductor. Otherwise,

as in (i), charge will immediately flow around the surface until it kills off the
tangential component (Fig. 2.43). (Perpendicular to the surface, charge cannot
flow, of course, since it is confined to the conducting object.)

E1

E0

− +
− +
− +
− +
− +
− +
− +
− +
− +
− +
− +
− +
− +

FIGURE 2.42

9Outside the conductor the field is not zero, for here E0 and E1 do not tend to cancel.
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E

Conductor
E = 0

FIGURE 2.43

I think it is astonishing that the charge on a conductor flows to the surface.
Because of their mutual repulsion, the charges naturally spread out as much as
possible, but for all of them to go to the surface seems like a waste of the interior
space. Surely we could do better, from the point of view of making each charge
as far as possible from its neighbors, to sprinkle some of them throughout the
volume . . . Well, it simply is not so. You do best to put all the charge on the
surface, and this is true regardless of the size or shape of the conductor.10

The problem can also be phrased in terms of energy. Like any other free
dynamical system, the charge on a conductor will seek the configuration that
minimizes its potential energy. What property (iii) asserts is that the electrostatic
energy of a solid object (with specified shape and total charge) is a minimum
when that charge is spread over the surface. For instance, the energy of a sphere
is (1/8πε0)(q2/R) if the charge is uniformly distributed over the surface, as we
found in Ex. 2.9, but it is greater, (3/20πε0)(q2/R), if the charge is uniformly
distributed throughout the volume (Prob. 2.34).

2.5.2 Induced Charges

If you hold a charge +q near an uncharged conductor (Fig. 2.44), the two will
attract one another. The reason for this is that q will pull minus charges over to
the near side and repel plus charges to the far side. (Another way to think of it
is that the charge moves around in such a way as to kill off the field of q for
points inside the conductor, where the total field must be zero.) Since the negative
induced charge is closer to q, there is a net force of attraction. (In Chapter 3 we
shall calculate this force explicitly, for the case of a spherical conductor.)

When I speak of the field, charge, or potential “inside” a conductor, I mean in
the “meat” of the conductor; if there is some hollow cavity in the conductor, and

10By the way, the one- and two-dimensional analogs are quite different: The charge on a conducting
disk does not all go to the perimeter (R. Friedberg, Am. J. Phys. 61, 1084 (1993)), nor does the charge
on a conducting needle go to the ends (D. J. Griffiths and Y. Li, Am. J. Phys. 64, 706 (1996))—see
Prob. 2.57. Moreover, if the exponent of r in Coulomb’s law were not precisely 2, the charge on a
solid conductor would not all go to the surface—see D. J. Griffiths and D. Z. Uvanovic, Am. J. Phys.
69, 435 (2001), and Prob. 2.54g.
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within that cavity you put some charge, then the field in the cavity will not be zero.
But in a remarkable way the cavity and its contents are electrically isolated from
the outside world by the surrounding conductor (Fig. 2.45). No external fields
penetrate the conductor; they are canceled at the outer surface by the induced
charge there. Similarly, the field due to charges within the cavity is canceled,
for all exterior points, by the induced charge on the inner surface. However, the
compensating charge left over on the outer surface of the conductor effectively
“communicates” the presence of q to the outside world. The total charge induced
on the cavity wall is equal and opposite to the charge inside, for if we surround the
cavity with a Gaussian surface, all points of which are in the conductor (Fig. 2.45),∮

E · da = 0, and hence (by Gauss’s law) the net enclosed charge must be zero.
But Qenc = q + q induced , so q induced = −q. Then if the conductor as a whole is
electrically neutral, there must be a charge +q on its outer surface.

Example 2.10. An uncharged spherical conductor centered at the origin has a
cavity of some weird shape carved out of it (Fig. 2.46). Somewhere within the
cavity is a charge q. Question: What is the field outside the sphere?

Conductor

P

Cavity

−q

+q
q

r

FIGURE 2.46
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Solution
At first glance, it would appear that the answer depends on the shape of the cavity
and the location of the charge. But that’s wrong: the answer is

E = 1

4πε0

q

r2
r̂

regardless. The conductor conceals from us all information concerning the na-
ture of the cavity, revealing only the total charge it contains. How can this be?
Well, the charge +q induces an opposite charge −q on the wall of the cavity,
which distributes itself in such a way that its field cancels that of q, for all points
exterior to the cavity. Since the conductor carries no net charge, this leaves +q to
distribute itself uniformly over the surface of the sphere. (It’s uniform because the
asymmetrical influence of the point charge +q is negated by that of the induced
charge −q on the inner surface.) For points outside the sphere, then, the only thing
that survives is the field of the leftover +q, uniformly distributed over the outer
surface.

It may occur to you that in one respect this argument is open to challenge:
There are actually three fields at work here: Eq , E induced, and E leftover. All we
know for certain is that the sum of the three is zero inside the conductor, yet I
claimed that the first two alone cancel, while the third is separately zero there.
Moreover, even if the first two cancel within the conductor, who is to say they still
cancel for points outside? They do not, after all, cancel for points inside the cavity.
I cannot give you a completely satisfactory answer at the moment, but this much
at least is true: There exists a way of distributing −q over the inner surface so as
to cancel the field of q at all exterior points. For that same cavity could have been
carved out of a huge spherical conductor with a radius of 27 miles or light years or
whatever. In that case, the leftover +q on the outer surface is simply too far away
to produce a significant field, and the other two fields would have to accomplish
the cancellation by themselves. So we know they can do it . . . but are we sure
they choose to? Perhaps for small spheres nature prefers some complicated three-
way cancellation. Nope: As we’ll see in the uniqueness theorems of Chapter 3,
electrostatics is very stingy with its options; there is always precisely one way—
no more—of distributing the charge on a conductor so as to make the field inside
zero. Having found a possible way, we are guaranteed that no alternative exists,
even in principle.

If a cavity surrounded by conducting material is itself empty of charge, then the
field within the cavity is zero. For any field line would have to begin and end on the
cavity wall, going from a plus charge to a minus charge (Fig. 2.47). Letting that
field line be part of a closed loop, the rest of which is entirely inside the conductor
(where E = 0), the integral

∮
E · dl is distinctly positive, in violation of Eq. 2.19.

It follows that E = 0 within an empty cavity, and there is in fact no charge on the
surface of the cavity. (This is why you are relatively safe inside a metal car during
a thunderstorm—you may get cooked, if lightning strikes, but you will not be
electrocuted. The same principle applies to the placement of sensitive apparatus
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inside a grounded Faraday cage, to shield out stray electric fields. In practice,
the enclosure doesn’t even have to be solid conductor—chicken wire will often
suffice.)

Problem 2.38 A metal sphere of radius R, carrying charge q, is surrounded by a
thick concentric metal shell (inner radius a, outer radius b, as in Fig. 2.48). The
shell carries no net charge.

(a) Find the surface charge density σ at R, at a, and at b.

(b) Find the potential at the center, using infinity as the reference point.

(c) Now the outer surface is touched to a grounding wire, which drains off charge
and lowers its potential to zero (same as at infinity). How do your answers to
(a) and (b) change?

Problem 2.39 Two spherical cavities, of radii a and b, are hollowed out from the
interior of a (neutral) conducting sphere of radius R (Fig. 2.49). At the center of
each cavity a point charge is placed—call these charges qa and qb.

(a) Find the surface charge densities σa , σb, and σR .

(b) What is the field outside the conductor?

(c) What is the field within each cavity?

(d) What is the force on qa and qb?

R

a

b

FIGURE 2.48

qa

a R

qb

b

FIGURE 2.49
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(e) Which of these answers would change if a third charge, qc, were brought near
the conductor?

Problem 2.40

(a) A point charge q is inside a cavity in an uncharged conductor (Fig. 2.45). Is the
force on q necessarily zero?11

(b) Is the force between a point charge and a nearby uncharged conductor always
attractive?12

2.5.3 Surface Charge and the Force on a Conductor

Because the field inside a conductor is zero, boundary condition 2.33 requires that
the field immediately outside is

E = σ

ε0
n̂, (2.48)

consistent with our earlier conclusion that the field is normal to the surface. In
terms of potential, Eq. 2.36 yields

σ = −ε0
∂V

∂n
. (2.49)

These equations enable you to calculate the surface charge on a conductor, if you
can determine E or V ; we shall use them frequently in the next chapter.

In the presence of an electric field, a surface charge will experience a force;
the force per unit area, f, is σE. But there’s a problem here, for the electric field is
discontinuous at a surface charge, so what are we supposed to use: Eabove, Ebelow,
or something in between? The answer is that we should use the average of the two:

f = σE average = 1

2
σ(E above + E below). (2.50)

Eother

Patch

n

1
2

σ/�0

1
2

σ/�0

σ

FIGURE 2.50

11This problem was suggested by Nelson Christensen.
12See M. Levin and S. G. Johnson, Am. J. Phys. 79, 843 (2011).
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Why the average? The reason is very simple, though the telling makes it sound
complicated: Let’s focus our attention on a tiny patch of surface surrounding the
point in question (Fig. 2.50). (Make it small enough so it is essentially flat and
the surface charge on it is essentially constant.) The total field consists of two
parts—that attributable to the patch itself, and that due to everything else (other
regions of the surface, as well as any external sources that may be present):

E = E patch + E other .

Now, the patch cannot exert a force on itself, any more than you can lift yourself
by standing in a basket and pulling up on the handles. The force on the patch,
then, is due exclusively to E other, and this suffers no discontinuity (if we removed
the patch, the field in the “hole” would be perfectly smooth). The discontinuity is
due entirely to the charge on the patch, which puts out a field (σ/2ε0) on either
side, pointing away from the surface. Thus,

E above = E other + σ

2ε0
n̂,

E below = E other − σ

2ε0
n̂,

and hence

E other = 1

2
(E above + E below) = E average.

Averaging is really just a device for removing the contribution of the patch itself.
That argument applies to any surface charge; in the particular case of a con-

ductor, the field is zero inside and (σ/ε0)n̂ outside (Eq. 2.48), so the average is
(σ/2ε0)n̂, and the force per unit area is

f = 1

2ε0
σ 2n̂. (2.51)

This amounts to an outward electrostatic pressure on the surface, tending to draw
the conductor into the field, regardless of the sign of σ . Expressing the pressure
in terms of the field just outside the surface,

P = ε0

2
E2. (2.52)

Problem 2.41 Two large metal plates (each of area A) are held a small distance d
apart. Suppose we put a charge Q on each plate; what is the electrostatic pressure
on the plates?

Problem 2.42 A metal sphere of radius R carries a total charge Q. What is the force
of repulsion between the “northern” hemisphere and the “southern” hemisphere?
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+Q −Q

FIGURE 2.51

2.5.4 Capacitors

Suppose we have two conductors, and we put charge +Q on one and −Q on the
other (Fig. 2.51). Since V is constant over a conductor, we can speak unambigu-
ously of the potential difference between them:

V = V+ − V− = −
∫ (+)

(−)

E · dl.

We don’t know how the charge distributes itself over the two conductors, and
calculating the field would be a nightmare, if their shapes are complicated, but
this much we do know: E is proportional to Q. For E is given by Coulomb’s law:

E = 1

4πε0

∫
ρ

r2 r̂ dτ,

so if you double ρ, you double E. [Wait a minute! How do we know that dou-
bling Q (and also −Q) simply doubles ρ? Maybe the charge moves around into
a completely different configuration, quadrupling ρ in some places and halving it
in others, just so the total charge on each conductor is doubled. The fact is that
this concern is unwarranted—doubling Q does double ρ everywhere; it doesn’t
shift the charge around. The proof of this will come in Chapter 3; for now you’ll
just have to trust me.]

Since E is proportional to Q, so also is V . The constant of proportionality is
called the capacitance of the arrangement:

C ≡ Q

V
. (2.53)

Capacitance is a purely geometrical quantity, determined by the sizes, shapes, and
separation of the two conductors. In SI units, C is measured in farads (F); a farad
is a coulomb-per-volt. Actually, this turns out to be inconveniently large; more
practical units are the microfarad (10−6 F) and the picofarad (10−12 F).

Notice that V is, by definition, the potential of the positive conductor less
that of the negative one; likewise, Q is the charge of the positive conductor. Ac-
cordingly, capacitance is an intrinsically positive quantity. (By the way, you will
occasionally hear someone speak of the capacitance of a single conductor. In this
case the “second conductor,” with the negative charge, is an imaginary spherical
shell of infinite radius surrounding the one conductor. It contributes nothing to
the field, so the capacitance is given by Eq. 2.53, where V is the potential with
infinity as the reference point.)
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Example 2.11. Find the capacitance of a parallel-plate capacitor consisting of
two metal surfaces of area A held a distance d apart (Fig. 2.52).

d

A

FIGURE 2.52

Solution
If we put +Q on the top and −Q on the bottom, they will spread out uniformly
over the two surfaces, provided the area is reasonably large and the separation
small.13 The surface charge density, then, is σ = Q/A on the top plate, and so the
field, according to Ex. 2.6, is (1/ε0)Q/A. The potential difference between the
plates is therefore

V = Q

Aε0
d,

and hence

C = Aε0

d
. (2.54)

If, for instance, the plates are square with sides 1 cm long, and they are held 1 mm
apart, then the capacitance is 9 × 10−13 F.

Example 2.12. Find the capacitance of two concentric spherical metal shells,
with radii a and b.

Solution
Place charge +Q on the inner sphere, and −Q on the outer one. The field between
the spheres is

E = 1

4πε0

Q

r2
r̂,

so the potential difference between them is

V = −
∫ a

b
E · dl = − Q

4πε0

∫ a

b

1

r2
dr = Q

4πε0

(
1

a
− 1

b

)
.

13The exact solution is not easy—even for the simpler case of circular plates. See G. T. Carlson and
B. L. Illman, Am. J. Phys. 62, 1099 (1994).
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As promised, V is proportional to Q; the capacitance is

C = Q

V
= 4πε0

ab

(b − a)
.

To “charge up” a capacitor, you have to remove electrons from the positive
plate and carry them to the negative plate. In doing so, you fight against the electric
field, which is pulling them back toward the positive conductor and pushing them
away from the negative one. How much work does it take, then, to charge the
capacitor up to a final amount Q? Suppose that at some intermediate stage in the
process the charge on the positive plate is q, so that the potential difference is
q/C . According to Eq. 2.38, the work you must do to transport the next piece of
charge, dq, is

dW =
( q

C

)
dq.

The total work necessary, then, to go from q = 0 to q = Q, is

W =
∫ Q

0

( q

C

)
dq = 1

2

Q2

C
,

or, since Q = CV ,

W = 1

2
CV 2, (2.55)

where V is the final potential of the capacitor.

Problem 2.43 Find the capacitance per unit length of two coaxial metal cylindrical
tubes, of radii a and b (Fig. 2.53).

b

a

FIGURE 2.53

Problem 2.44 Suppose the plates of a parallel-plate capacitor move closer together
by an infinitesimal distance ε, as a result of their mutual attraction.

(a) Use Eq. 2.52 to express the work done by electrostatic forces, in terms of the
field E , and the area of the plates, A.

(b) Use Eq. 2.46 to express the energy lost by the field in this process.

(This problem is supposed to be easy, but it contains the embryo of an alternative
derivation of Eq. 2.52, using conservation of energy.)
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More Problems on Chapter 2

Problem 2.45 Find the electric field at a height z above the center of a square sheet
(side a) carrying a uniform surface charge σ . Check your result for the limiting
cases a → ∞ and z � a.[

Answer:(σ/2ε0)
{
(4/π) tan−1

√
1 + (a2/2z2) − 1

}]

Problem 2.46 If the electric field in some region is given (in spherical coordinates)
by the expression

E(r) = k

r

[
3 r̂ + 2 sin θ cos θ sin φ θ̂ + sin θ cos φ φ̂

]
,

for some constant k, what is the charge density? [Answer: 3kε0(1 + cos 2θ sin φ)/r 2]

Problem 2.47 Find the net force that the southern hemisphere of a uniformly
charged solid sphere exerts on the northern hemisphere. Express your answer in
terms of the radius R and the total charge Q. [Answer: (1/4πε0)(3Q2/16R2)]

Problem 2.48 An inverted hemispherical bowl of radius R carries a uniform surface
charge density σ . Find the potential difference between the “north pole” and the
center. [Answer: (Rσ/2ε0)(

√
2 − 1)]

Problem 2.49 A sphere of radius R carries a charge density ρ(r) = kr (where k is
a constant). Find the energy of the configuration. Check your answer by calculating
it in at least two different ways. [Answer: πk2 R7/7ε0]

Problem 2.50 The electric potential of some configuration is given by the expression

V (r) = A
e−λr

r
,

where A and λ are constants. Find the electric field E(r), the charge density ρ(r),
and the total charge Q. [Answer: ρ = ε0 A(4πδ3(r) − λ2e−λr/r)]

Problem 2.51 Find the potential on the rim of a uniformly charged disk (radius R,
charge density σ ). [Hint: First show that V = k(σ R/πε0), for some dimensionless
number k, which you can express as an integral. Then evaluate k analytically, if you
can, or by computer.]

Problem 2.52 Two infinitely long wires running parallel to the x axis carry uniform!
charge densities +λ and −λ (Fig. 2.54).

y

x

z

a a

−λ

+λ

FIGURE 2.54
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(a) Find the potential at any point (x, y, z), using the origin as your reference.

(b) Show that the equipotential surfaces are circular cylinders, and locate the axis
and radius of the cylinder corresponding to a given potential V0.

Problem 2.53 In a vacuum diode, electrons are “boiled” off a hot cathode, at po-!
tential zero, and accelerated across a gap to the anode, which is held at positive
potential V0. The cloud of moving electrons within the gap (called space charge)
quickly builds up to the point where it reduces the field at the surface of the cathode
to zero. From then on, a steady current I flows between the plates.

Suppose the plates are large relative to the separation (A � d2 in Fig. 2.55), so
that edge effects can be neglected. Then V , ρ, and v (the speed of the electrons) are
all functions of x alone.

x

A
Electron

Cathode
(V = 0)

Anode
(V0)

d

FIGURE 2.55

(a) Write Poisson’s equation for the region between the plates.

(b) Assuming the electrons start from rest at the cathode, what is their speed at point
x , where the potential is V (x)?

(c) In the steady state, I is independent of x . What, then, is the relation between
ρ and v?

(d) Use these three results to obtain a differential equation for V , by eliminating
ρ and v.

(e) Solve this equation for V as a function of x , V0, and d. Plot V (x), and compare
it to the potential without space-charge. Also, find ρ and v as functions of x .

(f) Show that

I = K V 3/2
0 , (2.56)

and find the constant K . (Equation 2.56 is called the Child-Langmuir law.
It holds for other geometries as well, whenever space-charge limits the current.
Notice that the space-charge limited diode is nonlinear—it does not obey Ohm’s
law.)



110 Chapter 2 Electrostatics

Problem 2.54 Imagine that new and extraordinarily precise measurements have re-!
vealed an error in Coulomb’s law. The actual force of interaction between two point
charges is found to be

F = 1

4πε0

q1q2

r2

(
1 + r

λ

)
e−(r/λ)r̂,

where λ is a new constant of nature (it has dimensions of length, obviously, and is a
huge number—say half the radius of the known universe—so that the correction is
small, which is why no one ever noticed the discrepancy before). You are charged
with the task of reformulating electrostatics to accommodate the new discovery.
Assume the principle of superposition still holds.

(a) What is the electric field of a charge distribution ρ (replacing Eq. 2.8)?

(b) Does this electric field admit a scalar potential? Explain briefly how you reached
your conclusion. (No formal proof necessary—just a persuasive argument.)

(c) Find the potential of a point charge q—the analog to Eq. 2.26. (If your answer
to (b) was “no,” better go back and change it!) Use ∞ as your reference point.

(d) For a point charge q at the origin, show that

∮
S

E · da + 1

λ2

∫
V

V dτ = 1

ε0
q,

where S is the surface, V the volume, of any sphere centered at q.

(e) Show that this result generalizes:

∮
S

E · da + 1

λ2

∫
V

V dτ = 1

ε0
Qenc,

for any charge distribution. (This is the next best thing to Gauss’s Law, in the
new “electrostatics.”)

(f) Draw the triangle diagram (like Fig. 2.35) for this world, putting in all the ap-
propriate formulas. (Think of Poisson’s equation as the formula for ρ in terms
of V , and Gauss’s law (differential form) as an equation for ρ in terms of E.)

(g) Show that some of the charge on a conductor distributes itself (uniformly!) over
the volume, with the remainder on the surface. [Hint: E is still zero, inside a
conductor.]

Problem 2.55 Suppose an electric field E(x, y, z) has the form

Ex = ax, Ey = 0, Ez = 0

where a is a constant. What is the charge density? How do you account for the fact
that the field points in a particular direction, when the charge density is uniform?
[This is a more subtle problem than it looks, and worthy of careful thought.]
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Problem 2.56 All of electrostatics follows from the 1/r 2 character of Coulomb’s
law, together with the principle of superposition. An analogous theory can therefore
be constructed for Newton’s law of universal gravitation. What is the gravitational
energy of a sphere, of mass M and radius R, assuming the density is uniform?
Use your result to estimate the gravitational energy of the sun (look up the relevant
numbers). Note that the energy is negative—masses attract, whereas (like) electric
charges repel. As the matter “falls in,” to create the sun, its energy is converted into
other forms (typically thermal), and it is subsequently released in the form of radia-
tion. The sun radiates at a rate of 3.86 × 1026 W; if all this came from gravitational
energy, how long would the sun last? [The sun is in fact much older than that, so
evidently this is not the source of its power.14]

Problem 2.57 We know that the charge on a conductor goes to the surface, but just!
how it distributes itself there is not easy to determine. One famous example in which
the surface charge density can be calculated explicitly is the ellipsoid:

x2

a2
+ y2

b2
+ z2

c2
= 1.

In this case15

σ = Q

4πabc

(
x2

a4
+ y2

b4
+ z2

c4

)−1/2

, (2.57)

where Q is the total charge. By choosing appropriate values for a, b, and c, obtain
(from Eq. 2.57): (a) the net (both sides) surface charge density σ(r) on a circular
disk of radius R; (b) the net surface charge density σ(x) on an infinite conducting
“ribbon” in the xy plane, which straddles the y axis from x = −a to x = a (let �

be the total charge per unit length of ribbon); (c) the net charge per unit length λ(x)

on a conducting “needle,” running from x = −a to x = a. In each case, sketch the
graph of your result.

Problem 2.58

(a) Consider an equilateral triangle, inscribed in a circle of radius a, with a point
charge q at each vertex. The electric field is zero (obviously) at the center, but
(surprisingly) there are three other points inside the triangle where the field is
zero. Where are they? [Answer: r = 0.285 a—you’ll probably need a computer
to get it.]

(b) For a regular n-sided polygon there are n points (in addition to the center) where
the field is zero.16 Find their distance from the center for n = 4 and n = 5. What
do you suppose happens as n → ∞?

14Lord Kelvin used this argument to counter Darwin’s theory of evolution, which called for a much
older Earth. Of course, we now know that the source of the Sun’s energy is nuclear fusion, not gravity.
15For the derivation (which is a real tour de force), see W. R. Smythe, Static and Dynamic Electricity,
3rd ed. (New York: Hemisphere, 1989), Sect. 5.02.
16S. D. Baker, Am. J. Phys. 52, 165 (1984); D. Kiang and D. A. Tindall, Am. J. Phys. 53, 593 (1985).
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Problem 2.59 Prove or disprove (with a counterexample) the following

Theorem: Suppose a conductor carrying a net charge Q, when placed in an
external electric field Ee, experiences a force F; if the external field is now
reversed (Ee → −Ee), the force also reverses (F → −F).

What if we stipulate that the external field is uniform?

Problem 2.60 A point charge q is at the center of an uncharged spherical conducting
shell, of inner radius a and outer radius b. Question: How much work would it take
to move the charge out to infinity (through a tiny hole drilled in the shell)? [Answer:
(q2/8πε0)(1/a − 1/b).]

Problem 2.61 What is the minimum-energy configuration for a system of N equal
point charges placed on or inside a circle of radius R?17 Because the charge on
a conductor goes to the surface, you might think the N charges would arrange
themselves (uniformly) around the circumference. Show (to the contrary) that for
N = 12 it is better to place 11 on the circumference and one at the center. How about
for N = 11 (is the energy lower if you put all 11 around the circumference, or if you
put 10 on the circumference and one at the center)? [Hint: Do it numerically—you’ll
need at least 4 significant digits. Express all energies as multiples of q2/4πε0 R]

17M. G. Calkin, D. Kiang, and D. A. Tindall, Am. H. Phys. 55, 157 (1987).
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3 Potentials

3.1 LAPLACE’S EQUATION

3.1.1 Introduction

The primary task of electrostatics is to find the electric field of a given stationary
charge distribution. In principle, this purpose is accomplished by Coulomb’s law,
in the form of Eq. 2.8:

E(r) = 1

4πε0

∫ r̂
r2 ρ(r′) dτ ′. (3.1)

Unfortunately, integrals of this type can be difficult to calculate for any but the
simplest charge configurations. Occasionally we can get around this by exploiting
symmetry and using Gauss’s law, but ordinarily the best strategy is first to calcu-
late the potential, V , which is given by the somewhat more tractable Eq. 2.29:

V (r) = 1

4πε0

∫
1

r ρ(r′) dτ ′. (3.2)

Still, even this integral is often too tough to handle analytically. Moreover, in prob-
lems involving conductors ρ itself may not be known in advance; since charge is
free to move around, the only thing we control directly is the total charge (or
perhaps the potential) of each conductor.

In such cases, it is fruitful to recast the problem in differential form, using
Poisson’s equation (2.24),

∇2V = − 1

ε0
ρ, (3.3)

which, together with appropriate boundary conditions, is equivalent to Eq. 3.2.
Very often, in fact, we are interested in finding the potential in a region where
ρ = 0. (If ρ = 0 everywhere, of course, then V = 0, and there is nothing further
to say—that’s not what I mean. There may be plenty of charge elsewhere, but
we’re confining our attention to places where there is no charge.) In this case,
Poisson’s equation reduces to Laplace’s equation:

∇2V = 0, (3.4)

113
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or, written out in Cartesian coordinates,

∂2V

∂x2
+ ∂2V

∂y2
+ ∂2V

∂z2
= 0. (3.5)

This formula is so fundamental to the subject that one might almost say elec-
trostatics is the study of Laplace’s equation. At the same time, it is a ubiquitous
equation, appearing in such diverse branches of physics as gravitation and mag-
netism, the theory of heat, and the study of soap bubbles. In mathematics, it plays
a major role in analytic function theory. To get a feel for Laplace’s equation and
its solutions (which are called harmonic functions), we shall begin with the one-
and two-dimensional versions, which are easier to picture, and illustrate all the
essential properties of the three-dimensional case.

3.1.2 Laplace’s Equation in One Dimension

Suppose V depends on only one variable, x . Then Laplace’s equation becomes

d2V

dx2
= 0.

The general solution is

V (x) = mx + b, (3.6)

the equation for a straight line. It contains two undetermined constants (m
and b), as is appropriate for a second-order (ordinary) differential equation. They
are fixed, in any particular case, by the boundary conditions of that problem. For
instance, it might be specified that V = 4 at x = 1, and V = 0 at x = 5. In that
case, m = −1 and b = 5, so V = −x + 5 (see Fig. 3.1).

I want to call your attention to two features of this result; they may seem silly
and obvious in one dimension, where I can write down the general solution explic-
itly, but the analogs in two and three dimensions are powerful and by no means
obvious:

x

V

1

2

3

4

1 3 52 4 6

FIGURE 3.1
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1. V (x) is the average of V (x + a) and V (x − a), for any a:

V (x) = 1

2
[V (x + a) + V (x − a)].

Laplace’s equation is a kind of averaging instruction; it tells you to assign
to the point x the average of the values to the left and to the right of x .
Solutions to Laplace’s equation are, in this sense, as boring as they could
possibly be, and yet fit the end points properly.

2. Laplace’s equation tolerates no local maxima or minima; extreme values
of V must occur at the end points. Actually, this is a consequence of (1),
for if there were a local maximum, V would be greater at that point than
on either side, and therefore could not be the average. (Ordinarily, you
expect the second derivative to be negative at a maximum and positive at a
minimum. Since Laplace’s equation requires, on the contrary, that the sec-
ond derivative is zero, it seems reasonable that solutions should exhibit no
extrema. However, this is not a proof, since there exist functions that have
maxima and minima at points where the second derivative vanishes: x4, for
example, has such a minimum at the point x = 0.)

3.1.3 Laplace’s Equation in Two Dimensions

If V depends on two variables, Laplace’s equation becomes

∂2V

∂x2
+ ∂2V

∂y2
= 0.

This is no longer an ordinary differential equation (that is, one involving ordinary
derivatives only); it is a partial differential equation. As a consequence, some of
the simple rules you may be familiar with do not apply. For instance, the gen-
eral solution to this equation doesn’t contain just two arbitrary constants—or, for
that matter, any finite number—despite the fact that it’s a second-order equation.
Indeed, one cannot write down a “general solution” (at least, not in a closed form
like Eq. 3.6). Nevertheless, it is possible to deduce certain properties common to
all solutions.

It may help to have a physical example in mind. Picture a thin rubber sheet (or a
soap film) stretched over some support. For definiteness, suppose you take a card-
board box, cut a wavy line all the way around, and remove the top part (Fig. 3.2).
Now glue a tightly stretched rubber membrane over the box, so that it fits like a
drum head (it won’t be a flat drumhead, of course, unless you chose to cut the
edges off straight). Now, if you lay out coordinates (x, y) on the bottom of the
box, the height V (x, y) of the sheet above the point (x, y) will satisfy Laplace’s
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FIGURE 3.2

equation.1 (The one-dimensional analog would be a rubber band stretched
between two points. Of course, it would form a straight line.)

Harmonic functions in two dimensions have the same properties we noted in
one dimension:

1. The value of V at a point (x, y) is the average of those around the point.
More precisely, if you draw a circle of any radius R about the point (x, y),
the average value of V on the circle is equal to the value at the center:

V (x, y) = 1

2π R

∮
circle

V dl.

(This, incidentally, suggests the method of relaxation, on which computer
solutions to Laplace’s equation are based: Starting with specified values for
V at the boundary, and reasonable guesses for V on a grid of interior points,
the first pass reassigns to each point the average of its nearest neighbors.
The second pass repeats the process, using the corrected values, and so on.
After a few iterations, the numbers begin to settle down, so that subsequent
passes produce negligible changes, and a numerical solution to Laplace’s
equation, with the given boundary values, has been achieved.)2

2. V has no local maxima or minima; all extrema occur at the boundaries. (As
before, this follows from (1).) Again, Laplace’s equation picks the most
featureless function possible, consistent with the boundary conditions: no
hills, no valleys, just the smoothest conceivable surface. For instance, if
you put a ping-pong ball on the stretched rubber sheet of Fig. 3.2, it will

1Actually, the equation satisfied by a rubber sheet is

∂

∂x

(
g

∂V

∂x

)
+ ∂

∂y

(
g

∂V

∂y

)
= 0, where g =

[
1 +

(
∂V

∂x

)2

+
(

∂V

∂y

)2
]−1/2

;

it reduces (approximately) to Laplace’s equation as long as the surface does not deviate too radically
from a plane.
2See, for example, E. M. Purcell, Electricity and Magnetism, 2nd ed. (New York: McGraw-Hill, 1985),
problem 3.30.
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roll over to one side and fall off—it will not find a “pocket” somewhere to
settle into, for Laplace’s equation allows no such dents in the surface. From
a geometrical point of view, just as a straight line is the shortest distance
between two points, so a harmonic function in two dimensions minimizes
the surface area spanning the given boundary line.

3.1.4 Laplace’s Equation in Three Dimensions

In three dimensions I can neither provide you with an explicit solution (as in one
dimension) nor offer a suggestive physical example to guide your intuition (as I
did in two dimensions). Nevertheless, the same two properties remain true, and
this time I will sketch a proof.3

1. The value of V at point r is the average value of V over a spherical surface
of radius R centered at r:

V (r) = 1

4π R2

∮
sphere

V da.

2. As a consequence, V can have no local maxima or minima; the extreme
values of V must occur at the boundaries. (For if V had a local maximum
at r, then by the very nature of maximum I could draw a sphere around r
over which all values of V —and a fortiori the average—would be less than
at r.)

Proof. Let’s begin by calculating the average potential over a spherical surface
of radius R due to a single point charge q located outside the sphere. We may as
well center the sphere at the origin and choose coordinates so that q lies on the
z-axis (Fig. 3.3). The potential at a point on the surface is

V = 1

4πε0

q

r ,

q

z

daθ
R

r

x

y

FIGURE 3.3

3For a proof that does not rely on Coulomb’s law (only on Laplace’s equation), see Prob. 3.37.
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where

r2 = z2 + R2 − 2z R cos θ,

so

Vave = 1

4π R2

q

4πε0

∫
[z2 + R2 − 2z R cos θ ]−1/2 R2 sin θ dθ dφ

= q

4πε0

1

2z R

√
z2 + R2 − 2z R cos θ

∣∣∣∣
π

0

= q

4πε0

1

2z R
[(z + R) − (z − R)] = 1

4πε0

q

z
.

But this is precisely the potential due to q at the center of the sphere! By the
superposition principle, the same goes for any collection of charges outside the
sphere: their average potential over the sphere is equal to the net potential they
produce at the center. �

Problem 3.1 Find the average potential over a spherical surface of radius R due to
a point charge q located inside (same as above, in other words, only with z < R).
(In this case, of course, Laplace’s equation does not hold within the sphere.) Show
that, in general,

Vave = Vcenter + Qenc

4πε0 R
,

where Vcenter is the potential at the center due to all the external charges, and Qenc is
the total enclosed charge.

Problem 3.2 In one sentence, justify Earnshaw’s Theorem: A charged particle
cannot be held in a stable equilibrium by electrostatic forces alone. As an example,
consider the cubical arrangement of fixed charges in Fig. 3.4. It looks, off hand,
as though a positive charge at the center would be suspended in midair, since it
is repelled away from each corner. Where is the leak in this “electrostatic bottle”?
[To harness nuclear fusion as a practical energy source it is necessary to heat a
plasma (soup of charged particles) to fantastic temperatures—so hot that contact
would vaporize any ordinary pot. Earnshaw’s theorem says that electrostatic con-
tainment is also out of the question. Fortunately, it is possible to confine a hot plasma
magnetically.]

q

q q

q

q
qq

q

FIGURE 3.4
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Problem 3.3 Find the general solution to Laplace’s equation in spherical coordi-
nates, for the case where V depends only on r . Do the same for cylindrical coordi-
nates, assuming V depends only on s.

Problem 3.4

(a) Show that the average electric field over a spherical surface, due to charges
outside the sphere, is the same as the field at the center.

(b) What is the average due to charges inside the sphere?

3.1.5 Boundary Conditions and Uniqueness Theorems

Laplace’s equation does not by itself determine V ; in addition, suitable boundary
conditions must be supplied. This raises a delicate question: What are appropriate
boundary conditions, sufficient to determine the answer and yet not so strong
as to generate inconsistencies? The one-dimensional case is easy, for here the
general solution V = mx + b contains two arbitrary constants, and we therefore
require two boundary conditions. We might, for instance, specify the value of the
function at each end, or we might give the value of the function and its derivative
at one end, or the value at one end and the derivative at the other, and so on.
But we cannot get away with just the value or just the derivative at one end—
this is insufficient information. Nor would it do to specify the derivatives at both
ends—this would either be redundant (if the two are equal) or inconsistent (if they
are not).

In two or three dimensions we are confronted by a partial differential equation,
and it is not so obvious what would constitute acceptable boundary conditions. Is
the shape of a taut rubber membrane, for instance, uniquely determined by the
frame over which it is stretched, or, like a canning jar lid, can it snap from one
stable configuration to another? The answer, as I think your intuition would sug-
gest, is that V is uniquely determined by its value at the boundary (canning jars
evidently do not obey Laplace’s equation). However, other boundary conditions
can also be used (see Prob. 3.5). The proof that a proposed set of boundary condi-
tions will suffice is usually presented in the form of a uniqueness theorem. There
are many such theorems for electrostatics, all sharing the same basic format—I’ll
show you the two most useful ones.4

First uniqueness theorem: The solution to Laplace’s equation in
some volume V is uniquely determined if V is specified on the
boundary surface S.

Proof. In Fig. 3.5 I have drawn such a region and its boundary. (There could also
be “islands” inside, so long as V is given on all their surfaces; also, the outer

4I do not intend to prove the existence of solutions here—that’s a much more difficult job. In context,
the existence is generally clear on physical grounds.
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V wanted in
this volume
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surface (   )

V

S

FIGURE 3.5

boundary could be at infinity, where V is ordinarily taken to be zero.) Suppose
there were two solutions to Laplace’s equation:

∇2V1 = 0 and ∇2V2 = 0,

both of which assume the specified value on the surface. I want to prove that they
must be equal. The trick is look at their difference:

V3 ≡ V1 − V2.

This obeys Laplace’s equation,

∇2V3 = ∇2V1 − ∇2V2 = 0,

and it takes the value zero on all boundaries (since V1 and V2 are equal there).
But Laplace’s equation allows no local maxima or minima—all extrema occur on
the boundaries. So the maximum and minimum of V3 are both zero. Therefore V3

must be zero everywhere, and hence

V1 = V2. �

Example 3.1. Show that the potential is constant inside an enclosure com-
pletely surrounded by conducting material, provided there is no charge within the
enclosure.

Solution
The potential on the cavity wall is some constant, V0 (that’s item (iv), in
Sect. 2.5.1), so the potential inside is a function that satisfies Laplace’s equa-
tion and has the constant value V0 at the boundary. It doesn’t take a genius to
think of one solution to this problem: V = V0 everywhere. The uniqueness the-
orem guarantees that this is the only solution. (It follows that the field inside an
empty cavity is zero—the same result we found in Sect. 2.5.2 on rather different
grounds.)

The uniqueness theorem is a license to your imagination. It doesn’t matter
how you come by your solution; if (a) it satisfies Laplace’s equation and (b) it has
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the correct value on the boundaries, then it’s right. You’ll see the power of this
argument when we come to the method of images.

Incidentally, it is easy to improve on the first uniqueness theorem: I assumed
there was no charge inside the region in question, so the potential obeyed
Laplace’s equation, but we may as well throw in some charge (in which case
V obeys Poisson’s equation). The argument is the same, only this time

∇2V1 = − 1

ε0
ρ, ∇2V2 = − 1

ε0
ρ,

so

∇2V3 = ∇2V1 − ∇2V2 = − 1

ε0
ρ + 1

ε0
ρ = 0.

Once again the difference (V3 ≡ V1 − V2) satisfies Laplace’s equation and has the
value zero on all boundaries, so V3 = 0 and hence V1 = V2.

Corollary: The potential in a volume V is uniquely determined if
(a) the charge density throughout the region, and (b) the
value of V on all boundaries, are specified.

3.1.6 Conductors and the Second Uniqueness Theorem

The simplest way to set the boundary conditions for an electrostatic problem is to
specify the value of V on all surfaces surrounding the region of interest. And this
situation often occurs in practice: In the laboratory, we have conductors connected
to batteries, which maintain a given potential, or to ground, which is the exper-
imentalist’s word for V = 0. However, there are other circumstances in which
we do not know the potential at the boundary, but rather the charges on various
conducting surfaces. Suppose I put charge Qa on the first conductor, Qb on the
second, and so on—I’m not telling you how the charge distributes itself over each
conducting surface, because as soon as I put it on, it moves around in a way I do
not control. And for good measure, let’s say there is some specified charge density
ρ in the region between the conductors. Is the electric field now uniquely deter-
mined? Or are there perhaps a number of different ways the charges could arrange
themselves on their respective conductors, each leading to a different field?

Second uniqueness theorem: In a volume V surrounded by conduc-
tors and containing a specified charge density ρ, the electric field is
uniquely determined if the total charge on each conductor is given
(Fig. 3.6). (The region as a whole can be bounded by another con-
ductor, or else unbounded.)

Proof. Suppose there are two fields satisfying the conditions of the problem. Both
obey Gauss’s law in differential form in the space between the conductors:

∇ · E1 = 1

ε0
ρ, ∇ · E2 = 1

ε0
ρ.
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And both obey Gauss’s law in integral form for a Gaussian surface enclosing each
conductor: ∮

i th conducting
surface

E1 · da = 1

ε0
Qi ,

∮
i th conducting

surface

E2 · da = 1

ε0
Qi .

Likewise, for the outer boundary (whether this is just inside an enclosing conduc-
tor or at infinity),

∮
outer

boundary

E1 · da = 1

ε0
Qtot,

∮
outer

boundary

E2 · da = 1

ε0
Qtot.

As before, we examine the difference

E3 ≡ E1 − E2,

which obeys

∇ · E3 = 0 (3.7)

in the region between the conductors, and
∮

E3 · da = 0 (3.8)

over each boundary surface.
Now there is one final piece of information we must exploit: Although we

do not know how the charge Qi distributes itself over the i th conductor, we do
know that each conductor is an equipotential, and hence V3 is a constant (not
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necessarily the same constant) over each conducting surface. (It need not be zero,
for the potentials V1 and V2 may not be equal—all we know for sure is that both
are constant over any given conductor.) Next comes a trick. Invoking product rule
number 5 (inside front cover), we find that

∇ · (V3E3) = V3(∇ · E3) + E3 · (∇V3) = −(E3)
2.

Here I have used Eq. 3.7, and E3 = −∇V3. Integrating this over V , and applying
the divergence theorem to the left side:

∫
V

∇ · (V3E3) dτ =
∮
S

V3E3 · da = −
∫
V

(E3)
2 dτ.

The surface integral covers all boundaries of the region in question—the con-
ductors and outer boundary. Now V3 is a constant over each surface (if the outer
boundary is infinity, V3 = 0 there), so it comes outside each integral, and what
remains is zero, according to Eq. 3.8. Therefore,

∫
V

(E3)
2 dτ = 0.

But this integrand is never negative; the only way the integral can vanish is if
E3 = 0 everywhere. Consequently, E1 = E2, and the theorem is proved. �

This proof was not easy, and there is a real danger that the theorem itself will
seem more plausible to you than the proof. In case you think the second unique-
ness theorem is “obvious,” consider this example of Purcell’s: Figure 3.7 shows
a simple electrostatic configuration, consisting of four conductors with charges
±Q, situated so that the plusses are near the minuses. It all looks very comfort-
able. Now, what happens if we join them in pairs, by tiny wires, as indicated in
Fig. 3.8? Since the positive charges are very near negative charges (which is where
they like to be) you might well guess that nothing will happen—the configuration
looks stable.

Well, that sounds reasonable, but it’s wrong. The configuration in Fig. 3.8 is
impossible. For there are now effectively two conductors, and the total charge
on each is zero. One possible way to distribute zero charge over these con-
ductors is to have no accumulation of charge anywhere, and hence zero field

+ −

− +

FIGURE 3.7

+ −

− +

FIGURE 3.8
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everywhere (Fig. 3.9). By the second uniqueness theorem, this must be the solu-
tion: The charge will flow down the tiny wires, canceling itself off.

Problem 3.5 Prove that the field is uniquely determined when the charge density ρ

is given and either V or the normal derivative ∂V/∂n is specified on each boundary
surface. Do not assume the boundaries are conductors, or that V is constant over
any given surface.

Problem 3.6 A more elegant proof of the second uniqueness theorem uses Green’s
identity (Prob. 1.61c), with T = U = V3. Supply the details.

3.2 THE METHOD OF IMAGES

3.2.1 The Classic Image Problem

Suppose a point charge q is held a distance d above an infinite grounded con-
ducting plane (Fig. 3.10). Question: What is the potential in the region above the
plane? It’s not just (1/4πε0)q/r, for q will induce a certain amount of negative
charge on the nearby surface of the conductor; the total potential is due in part
to q directly, and in part to this induced charge. But how can we possibly calcu-
late the potential, when we don’t know how much charge is induced or how it is
distributed?

From a mathematical point of view, our problem is to solve Poisson’s equa-
tion in the region z > 0, with a single point charge q at (0, 0, d), subject to the
boundary conditions:

1. V = 0 when z = 0 (since the conducting plane is grounded), and

2. V → 0 far from the charge
(
that is, for x2 + y2 + z2 � d2

)
.

The first uniqueness theorem (actually, its corollary) guarantees that there is only
one function that meets these requirements. If by trick or clever guess we can
discover such a function, it’s got to be the answer.

Trick: Forget about the actual problem; we’re going to study a completely
different situation. This new configuration consists of two point charges, +q at
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(0, 0, d) and −q at (0, 0,−d), and no conducting plane (Fig. 3.11). For this con-
figuration, I can easily write down the potential:

V (x, y, z) = 1

4πε0

[
q√

x2 + y2 + (z − d)2
− q√

x2 + y2 + (z + d)2

]
. (3.9)

(The denominators represent the distances from (x, y, z) to the charges +q and
−q, respectively.) It follows that

1. V = 0 when z = 0,

2. V → 0 for x2 + y2 + z2 � d2,

and the only charge in the region z > 0 is the point charge +q at (0, 0, d). But
these are precisely the conditions of the original problem! Evidently the second
configuration happens to produce exactly the same potential as the first config-
uration, in the “upper” region z ≥ 0. (The “lower” region, z < 0, is completely
different, but who cares? The upper part is all we need.) Conclusion: The poten-
tial of a point charge above an infinite grounded conductor is given by Eq. 3.9, for
z ≥ 0.

Notice the crucial role played by the uniqueness theorem in this argument:
without it, no one would believe this solution, since it was obtained for a com-
pletely different charge distribution. But the uniqueness theorem certifies it: If it
satisfies Poisson’s equation in the region of interest, and assumes the correct value
at the boundaries, then it must be right.

3.2.2 Induced Surface Charge

Now that we know the potential, it is a straightforward matter to compute the
surface charge σ induced on the conductor. According to Eq. 2.49,

σ = −ε0
∂V

∂n
,
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where ∂V/∂n is the normal derivative of V at the surface. In this case the normal
direction is the z direction, so

σ = −ε0
∂V

∂z

∣∣∣∣
z=0

.

From Eq. 3.9,

∂V

∂z
= 1

4πε0

{ −q(z − d)

[x2 + y2 + (z − d)2]3/2
+ q(z + d)

[x2 + y2 + (z + d)2]3/2

}
,

so5

σ(x, y) = −qd

2π(x2 + y2 + d2)3/2
. (3.10)

As expected, the induced charge is negative (assuming q is positive) and greatest
at x = y = 0.

While we’re at it, let’s compute the total induced charge

Q =
∫

σ da.

This integral, over the xy plane, could be done in Cartesian coordinates, with
da = dx dy, but it’s a little easier to use polar coordinates (r, φ), with r2 = x2+y2

and da = r dr dφ. Then

σ(r) = −qd

2π(r2 + d2)3/2
,

and

Q =
∫ 2π

0

∫ ∞

0

−qd

2π(r2 + d2)3/2
r dr dφ = qd√

r2 + d2

∣∣∣∣
∞

0

= −q. (3.11)

The total charge induced on the plane is −q, as (with benefit of hindsight) you
can perhaps convince yourself it had to be.

3.2.3 Force and Energy

The charge q is attracted toward the plane, because of the negative induced charge.
Let’s calculate the force of attraction. Since the potential in the vicinity of q is the
same as in the analog problem (the one with +q and −q but no conductor), so
also is the field and, therefore, the force:

F = − 1

4πε0

q2

(2d)2
ẑ. (3.12)

5For an entirely different derivation of this result, see Prob. 3.38.
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Beware: It is easy to get carried away, and assume that everything is the same
in the two problems. Energy, however, is not the same. With the two point charges
and no conductor, Eq. 2.42 gives

W = − 1

4πε0

q2

2d
. (3.13)

But for a single charge and conducting plane, the energy is half of this:

W = − 1

4πε0

q2

4d
. (3.14)

Why half? Think of the energy stored in the fields (Eq. 2.45):

W = ε0

2

∫
E2 dτ.

In the first case, both the upper region (z > 0) and the lower region (z < 0)

contribute—and by symmetry they contribute equally. But in the second case,
only the upper region contains a nonzero field, and hence the energy is half as
great.6

Of course, one could also determine the energy by calculating the work
required to bring q in from infinity. The force required (to oppose the electri-
cal force in Eq. 3.12) is (1/4πε0)(q2/4z2)ẑ, so

W =
∫ d

∞
F · dl = 1

4πε0

∫ d

∞
q2

4z2
dz

= 1

4πε0

(
−q2

4z

)∣∣∣∣
d

∞
= − 1

4πε0

q2

4d
.

As I move q toward the conductor, I do work only on q. It is true that induced
charge is moving in over the conductor, but this costs me nothing, since the whole
conductor is at potential zero. By contrast, if I simultaneously bring in two point
charges (with no conductor), I do work on both of them, and the total is (again)
twice as great.

3.2.4 Other Image Problems

The method just described is not limited to a single point charge; any station-
ary charge distribution near a grounded conducting plane can be treated in the
same way, by introducing its mirror image—hence the name method of images.
(Remember that the image charges have the opposite sign; this is what guarantees
that the xy plane will be at potential zero.) There are also some exotic problems
that can be handled in similar fashion; the nicest of these is the following.

6For a generalization of this result, see M. M. Taddei, T. N. C. Mendes, and C. Farina, Eur. J. Phys.
30, 965 (2009), and Prob. 3.41b.
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Example 3.2. A point charge q is situated a distance a from the center of a
grounded conducting sphere of radius R (Fig. 3.12). Find the potential outside
the sphere.

q
a

R

V = 0

FIGURE 3.12

a

q'b q

r

θ

r'
r

FIGURE 3.13

Solution
Examine the completely different configuration, consisting of the point charge q
together with another point charge

q ′ = − R

a
q, (3.15)

placed a distance

b = R2

a
(3.16)

to the right of the center of the sphere (Fig. 3.13). No conductor, now—just the
two point charges. The potential of this configuration is

V (r) = 1

4πε0

(
q

r + q ′

r′

)
, (3.17)

where r and r′ are the distances from q and q ′, respectively. Now, it happens (see
Prob. 3.8) that this potential vanishes at all points on the sphere, and therefore fits
the boundary conditions for our original problem, in the exterior region.7

Conclusion: Eq. 3.17 is the potential of a point charge near a grounded con-
ducting sphere. (Notice that b is less than R, so the “image” charge q ′ is safely
inside the sphere—you cannot put image charges in the region where you are cal-
culating V ; that would change ρ, and you’d be solving Poisson’s equation with

7This solution is due to William Thomson (later Lord Kelvin), who published it in 1848, when he
was just 24. It was apparently inspired by a theorem of Apollonius (200 BC) that says the locus of
points with a fixed ratio of distances from two given points is a sphere. See J. C. Maxwell, “Treatise on
Electricity and Magnetism, Vol. I,” Dover, New York, p. 245. I thank Gabriel Karl for this interesting
history.
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the wrong source.) In particular, the force of attraction between the charge and
the sphere is

F = 1

4πε0

qq ′

(a − b)2
= − 1

4πε0

q2 Ra

(a2 − R2)2
. (3.18)

The method of images is delightfully simple . . . when it works. But it is as
much an art as a science, for you must somehow think up just the right “auxil-
iary” configuration, and for most shapes this is forbiddingly complicated, if not
impossible.

Problem 3.7 Find the force on the charge +q in Fig. 3.14. (The xy plane is a
grounded conductor.)

V = 0

y

+q

d

3d

x

z

−2q

FIGURE 3.14

Problem 3.8

(a) Using the law of cosines, show that Eq. 3.17 can be written as follows:

V (r, θ) = 1

4πε0

[
q√

r 2 + a2 − 2ra cos θ
− q√

R2 + (ra/R)2 − 2ra cos θ

]
,

(3.19)

where r and θ are the usual spherical polar coordinates, with the z axis along the
line through q . In this form, it is obvious that V = 0 on the sphere, r = R.

(b) Find the induced surface charge on the sphere, as a function of θ . Integrate this
to get the total induced charge. (What should it be?)

(c) Calculate the energy of this configuration.

Problem 3.9 In Ex. 3.2 we assumed that the conducting sphere was grounded
(V = 0). But with the addition of a second image charge, the same basic model
will handle the case of a sphere at any potential V0 (relative, of course, to infin-
ity). What charge should you use, and where should you put it? Find the force of
attraction between a point charge q and a neutral conducting sphere.
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Problem 3.10 A uniform line charge λ is placed on an infinite straight wire, a dis-!
tance d above a grounded conducting plane. (Let’s say the wire runs parallel to the
x-axis and directly above it, and the conducting plane is the xy plane.)

(a) Find the potential in the region above the plane. [Hint: Refer to Prob. 2.52.]

(b) Find the charge density σ induced on the conducting plane.

Problem 3.11 Two semi-infinite grounded conducting planes meet at right angles.
In the region between them, there is a point charge q , situated as shown in Fig. 3.15.
Set up the image configuration, and calculate the potential in this region. What
charges do you need, and where should they be located? What is the force on q?
How much work did it take to bring q in from infinity? Suppose the planes met
at some angle other than 90◦; would you still be able to solve the problem by the
method of images? If not, for what particular angles does the method work?

xa

y

b q

V = 0

FIGURE 3.15
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−V0

R

+V0

FIGURE 3.16

Problem 3.12 Two long, straight copper pipes, each of radius R, are held a distance!
2d apart. One is at potential V0, the other at −V0 (Fig. 3.16). Find the potential
everywhere. [Hint: Exploit the result of Prob. 2.52.]

3.3 SEPARATION OF VARIABLES

In this section we shall attack Laplace’s equation directly, using the method of
separation of variables, which is the physicist’s favorite tool for solving par-
tial differential equations. The method is applicable in circumstances where the
potential (V ) or the charge density (σ ) is specified on the boundaries of some
region, and we are asked to find the potential in the interior. The basic strategy is
very simple: We look for solutions that are products of functions, each of which
depends on only one of the coordinates. The algebraic details, however, can be
formidable, so I’m going to develop the method through a sequence of examples.
We’ll start with Cartesian coordinates and then do spherical coordinates (I’ll leave
the cylindrical case for you to tackle on your own, in Prob. 3.24).
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3.3.1 Cartesian Coordinates

Example 3.3. Two infinite grounded metal plates lie parallel to the xz plane,
one at y = 0, the other at y = a (Fig. 3.17). The left end, at x = 0, is closed off
with an infinite strip insulated from the two plates, and maintained at a specific
potential V0(y). Find the potential inside this “slot.”

x

y

a

z

V = 0
V0(y)

V = 0

FIGURE 3.17

Solution
The configuration is independent of z, so this is really a two-dimensional problem.
In mathematical terms, we must solve Laplace’s equation,

∂2V

∂x2
+ ∂2V

∂y2
= 0, (3.20)

subject to the boundary conditions

(i) V = 0 when y = 0,

(ii) V = 0 when y = a,

(iii) V = V0(y) when x = 0,

(iv) V → 0 as x → ∞.

⎫⎪⎪⎬
⎪⎪⎭

(3.21)

(The latter, although not explicitly stated in the problem, is necessary on physical
grounds: as you get farther and farther away from the “hot” strip at x = 0, the
potential should drop to zero.) Since the potential is specified on all boundaries,
the answer is uniquely determined.

The first step is to look for solutions in the form of products:

V (x, y) = X (x)Y (y). (3.22)

On the face of it, this is an absurd restriction—the overwhelming majority of
solutions to Laplace’s equation do not have such a form. For example, V (x, y) =
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(5x + 6y) satisfies Eq. 3.20, but you can’t express it as the product of a function x
times a function y. Obviously, we’re only going to get a tiny subset of all possible
solutions by this means, and it would be a miracle if one of them happened to fit
the boundary conditions of our problem . . . But hang on, because the solutions
we do get are very special, and it turns out that by pasting them together we can
construct the general solution.

Anyway, putting Eq. 3.22 into Eq. 3.20, we obtain

Y
d2 X

dx2
+ X

d2Y

dy2
= 0.

The next step is to “separate the variables” (that is, collect all the x-dependence
into one term and all the y-dependence into another). Typically, this is accom-
plished by dividing through by V :

1

X

d2 X

dx2
+ 1

Y

d2Y

dy2
= 0. (3.23)

Here the first term depends only on x and the second only on y; in other words,
we have an equation of the form

f (x) + g(y) = 0. (3.24)

Now, there’s only one way this could possibly be true: f and g must both be
constant. For what if f (x) changed, as you vary x—then if we held y fixed and
fiddled with x , the sum f (x) + g(y) would change, in violation of Eq. 3.24, which
says it’s always zero. (That’s a simple but somehow rather elusive argument; don’t
accept it without due thought, because the whole method rides on it.)

It follows from Eq. 3.23, then, that

1

X

d2 X

dx2
= C1 and

1

Y

d2Y

dy2
= C2, with C1 + C2 = 0. (3.25)

One of these constants is positive, the other negative (or perhaps both are zero).
In general, one must investigate all the possibilities; however, in our particular
problem we need C1 positive and C2 negative, for reasons that will appear in a
moment. Thus

d2 X

dx2
= k2 X,

d2Y

dy2
= −k2Y. (3.26)

Notice what has happened: A partial differential equation (3.20) has been con-
verted into two ordinary differential equations (3.26). The advantage of this is
obvious—ordinary differential equations are a lot easier to solve. Indeed:

X (x) = Aekx + Be−kx , Y (y) = C sin ky + D cos ky,

so

V (x, y) = (Aekx + Be−kx )(C sin ky + D cos ky). (3.27)



3.3 Separation of Variables 133

This is the appropriate separable solution to Laplace’s equation; it remains to
impose the boundary conditions, and see what they tell us about the constants. To
begin at the end, condition (iv) requires that A equal zero.8 Absorbing B into C
and D, we are left with

V (x, y) = e−kx (C sin ky + D cos ky).

Condition (i) now demands that D equal zero, so

V (x, y) = Ce−kx sin ky. (3.28)

Meanwhile (ii) yields sin ka = 0, from which it follows that

k = nπ

a
, (n = 1, 2, 3, . . .). (3.29)

(At this point you can see why I chose C1 positive and C2 negative: If X were
sinusoidal, we could never arrange for it to go to zero at infinity, and if Y were
exponential we could not make it vanish at both 0 and a. Incidentally, n = 0 is
no good, for in that case the potential vanishes everywhere. And we have already
excluded negative n’s.)

That’s as far as we can go, using separable solutions, and unless V0(y) just
happens to have the form sin(nπy/a) for some integer n, we simply can’t fit the
final boundary condition at x = 0. But now comes the crucial step that redeems
the method: Separation of variables has given us an infinite family of solutions
(one for each n), and whereas none of them by itself satisfies the final boundary
condition, it is possible to combine them in a way that does. Laplace’s equation is
linear, in the sense that if V1, V2, V3, . . . satisfy it, so does any linear combina-
tion, V = α1V1 + α2V2 + α3V3 + . . . , where α1, α2, . . . are arbitrary constants.
For

∇2V = α1∇2V1 + α2∇2V2 + . . . = 0α1 + 0α2 + . . . = 0.

Exploiting this fact, we can patch together the separable solutions (Eq. 3.28) to
construct a much more general solution:

V (x, y) =
∞∑

n=1

Cne−nπx/a sin(nπy/a). (3.30)

This still satisfies three of the boundary conditions; the question is, can we (by
astute choice of the coefficients Cn) fit the final boundary condition (iii)?

V (0, y) =
∞∑

n=1

Cn sin(nπy/a) = V0(y). (3.31)

8I’m assuming k is positive, but this involves no loss of generality—negative k gives the same solution
(Eq. 3.27), only with the constants shuffled (A ↔ B, C → −C). Occasionally (though not in this
example) k = 0 must also be included (see Prob. 3.54).
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Well, you may recognize this sum—it’s a Fourier sine series. And Dirichlet’s
theorem9 guarantees that virtually any function V0(y)—it can even have a finite
number of discontinuities—can be expanded in such a series.

But how do we actually determine the coefficients Cn , buried as they are in that
infinite sum? The device for accomplishing this is so lovely it deserves a name—I
call it Fourier’s trick, though it seems Euler had used essentially the same idea
somewhat earlier. Here’s how it goes: Multiply Eq. 3.31 by sin(n′πy/a) (where
n′ is a positive integer), and integrate from 0 to a:

∞∑
n=1

Cn

∫ a

0
sin(nπy/a) sin(n′πy/a) dy =

∫ a

0
V0(y) sin(n′πy/a) dy. (3.32)

You can work out the integral on the left for yourself; the answer is

∫ a

0
sin(nπy/a) sin(n′πy/a) dy =

⎧⎪⎨
⎪⎩

0, if n′ �= n,

a

2
, if n′ = n.

(3.33)

Thus all the terms in the series drop out, save only the one where n = n′, and the
left side of Eq. 3.32, reduces to (a/2)Cn′ . Conclusion:10

Cn = 2

a

∫ a

0
V0(y) sin(nπy/a) dy. (3.34)

That does it: Eq. 3.30 is the solution, with coefficients given by Eq. 3.34.
As a concrete example, suppose the strip at x = 0 is a metal plate with con-
stant potential V0 (remember, it’s insulated from the grounded plates at y = 0 and
y = a). Then

Cn = 2V0

a

∫ a

0
sin(nπy/a) dy = 2V0

nπ
(1 − cos nπ) =

⎧⎪⎨
⎪⎩

0, if n is even,

4V0

nπ
, if n is odd.

(3.35)

Thus

V (x, y) = 4V0

π

∑
n=1,3,5...

1

n
e−nπx/a sin(nπy/a). (3.36)

Figure 3.18 is a plot of this potential; Fig. 3.19 shows how the first few terms
in the Fourier series combine to make a better and better approximation to the
constant V0: (a) is n = 1 only, (b) includes n up to 5, (c) is the sum of the first 10
terms, and (d) is the sum of the first 100 terms.
9Boas, M., Mathematical Methods in the Physical Sciences, 2nd ed. (New York: John Wiley, 1983).
10For aesthetic reasons I’ve dropped the prime; Eq. 3.34 holds for n = 1, 2, 3, . . . , and it doesn’t
matter (obviously) what letter you use for the “dummy” index.
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Incidentally, the infinite series in Eq. 3.36 can be summed explicitly (try your
hand at it, if you like); the result is

V (x, y) = 2V0

π
tan−1

(
sin(πy/a)

sinh(πx/a)

)
. (3.37)

In this form, it is easy to check that Laplace’s equation is obeyed and the four
boundary conditions (Eq. 3.21) are satisfied.

The success of this method hinged on two extraordinary properties of the sep-
arable solutions (Eqs. 3.28 and 3.29): completeness and orthogonality. A set of
functions fn(y) is said to be complete if any other function f (y) can be expressed
as a linear combination of them:

f (y) =
∞∑

n=1

Cn fn(y). (3.38)

The functions sin(nπy/a) are complete on the interval 0 ≤ y ≤ a. It was this fact,
guaranteed by Dirichlet’s theorem, that assured us Eq. 3.31 could be satisfied,
given the proper choice of the coefficients Cn . (The proof of completeness, for
a particular set of functions, is an extremely difficult business, and I’m afraid
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physicists tend to assume it’s true and leave the checking to others.) A set of
functions is orthogonal if the integral of the product of any two different members
of the set is zero:

∫ a

0
fn(y) fn′(y) dy = 0 for n′ �= n. (3.39)

The sine functions are orthogonal (Eq. 3.33); this is the property on which
Fourier’s trick is based, allowing us to kill off all terms but one in the infinite
series and thereby solve for the coefficients Cn . (Proof of orthogonality is gen-
erally quite simple, either by direct integration or by analysis of the differential
equation from which the functions came.)

Example 3.4. Two infinitely-long grounded metal plates, again at y = 0 and
y = a, are connected at x = ±b by metal strips maintained at a constant potential
V0, as shown in Fig. 3.20 (a thin layer of insulation at each corner prevents them
from shorting out). Find the potential inside the resulting rectangular pipe.

Solution
Once again, the configuration is independent of z. Our problem is to solve
Laplace’s equation

∂2V

∂x2
+ ∂2V

∂y2
= 0,

subject to the boundary conditions

(i) V = 0 when y = 0,

(ii) V = 0 when y = a,

(iii) V = V0 when x = b,

(iv) V = V0 when x = −b.

⎫⎪⎪⎬
⎪⎪⎭

(3.40)

The argument runs as before, up to Eq. 3.27:

V (x, y) = (Aekx + Be−kx )(C sin ky + D cos ky).

x

y

a
V0

V0

z

V=0

V=0
−b b

FIGURE 3.20
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This time, however, we cannot set A = 0; the region in question does not
extend to x = ∞, so ekx is perfectly acceptable. On the other hand, the situa-
tion is symmetric with respect to x , so V (−x, y) = V (x, y), and it follows that
A = B. Using

ekx + e−kx = 2 cosh kx,

and absorbing 2A into C and D, we have

V (x, y) = cosh kx (C sin ky + D cos ky).

Boundary conditions (i) and (ii) require, as before, that D = 0 and k = nπ/a, so

V (x, y) = C cosh(nπx/a) sin(nπy/a). (3.41)

Because V (x, y) is even in x , it will automatically meet condition (iv) if it fits
(iii). It remains, therefore, to construct the general linear combination,

V (x, y) =
∞∑

n=1

Cn cosh(nπx/a) sin(nπy/a),

and pick the coefficients Cn in such a way as to satisfy condition (iii):

V (b, y) =
∞∑

n=1

Cn cosh(nπb/a) sin(nπy/a) = V0.

This is the same problem in Fourier analysis that we faced before; I quote the
result from Eq. 3.35:

Cn cosh(nπb/a) =

⎧⎪⎨
⎪⎩

0, if n is even

4V0

nπ
, if n is odd

Conclusion: The potential in this case is given by

V (x, y) = 4V0

π

∑
n=1,3,5...

1

n

cosh(nπx/a)

cosh(nπb/a)
sin(nπy/a). (3.42)



138 Chapter 3 Potentials

This function is shown in Fig. 3.21.
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Example 3.5. An infinitely long rectangular metal pipe (sides a and b) is
grounded, but one end, at x = 0, is maintained at a specified potential V0(y, z),
as indicated in Fig. 3.22. Find the potential inside the pipe.

x

y

z

V = 0

V0(y, z)

V = 0

a

b

FIGURE 3.22

Solution
This is a genuinely three-dimensional problem,

∂2V

∂x2
+ ∂2V

∂y2
+ ∂2V

∂z2
= 0, (3.43)

subject to the boundary conditions

(i) V = 0 when y = 0,

(ii) V = 0 when y = a,

(iii) V = 0 when z = 0,

(iv) V = 0 when z = b,

(v) V → 0 as x → ∞,

(vi) V = V0(y, z) when x = 0.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.44)
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As always, we look for solutions that are products:

V (x, y, z) = X (x)Y (y)Z(z). (3.45)

Putting this into Eq. 3.43, and dividing by V , we find

1

X

d2 X

dx2
+ 1

Y

d2Y

dy2
+ 1

Z

d2 Z

dz2
= 0.

It follows that

1

X

d2 X

dx2
= C1,

1

Y

d2Y

dy2
= C2,

1

Z

d2 Z

dz2
= C3, with C1 + C2 + C3 = 0.

Our previous experience (Ex. 3.3) suggests that C1 must be positive, C2 and C3

negative. Setting C2 = −k2 and C3 = −l2, we have C1 = k2 + l2, and hence

d2 X

dx2
= (k2 + l2)X,

d2Y

dy2
= −k2Y,

d2 Z

dz2
= −l2 Z . (3.46)

Once again, separation of variables has turned a partial differential equation
into ordinary differential equations. The solutions are

X (x) = Ae
√

k2+l2 x + Be−√
k2+l2 x ,

Y (y) = C sin ky + D cos ky,

Z(z) = E sin lz + F cos lz.

Boundary condition (v) implies A = 0, (i) gives D = 0, and (iii) yields F = 0,
whereas (ii) and (iv) require that k = nπ/a and l = mπ/b, where n and m are
positive integers. Combining the remaining constants, we are left with

V (x, y, z) = Ce−π
√

(n/a)2+(m/b)2 x sin(nπy/a) sin(mπ z/b). (3.47)

This solution meets all the boundary conditions except (vi). It contains two un-
specified integers (n and m), and the most general linear combination is a double
sum:

V (x, y, z) =
∞∑

n=1

∞∑
m=1

Cn,me−π
√

(n/a)2+(m/b)2 x sin(nπy/a) sin(mπ z/b). (3.48)

We hope to fit the remaining boundary condition,

V (0, y, z) =
∞∑

n=1

∞∑
m=1

Cn,m sin(nπy/a) sin(mπ z/b) = V0(y, z), (3.49)
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by appropriate choice of the coefficients Cn,m . To determine these constants, we
multiply by sin(n′πy/a) sin(m ′π z/b), where n′ and m ′ are arbitrary positive
integers, and integrate:

∞∑
n=1

∞∑
m=1

Cn,m

∫ a

0
sin(nπy/a) sin(n′πy/a) dy

∫ b

0
sin(mπ z/b) sin(m ′π z/b) dz

=
∫ a

0

∫ b

0
V0(y, z) sin(n′πy/a) sin(m ′π z/b) dy dz.

Quoting Eq. 3.33, the left side is (ab/4)Cn′,m ′ , so

Cn,m = 4

ab

∫ a

0

∫ b

0
V0(y, z) sin(nπy/a) sin(mπ z/b) dy dz. (3.50)

Equation 3.48, with the coefficients given by Eq. 3.50, is the solution to our
problem.

For instance, if the end of the tube is a conductor at constant potential V0,

Cn,m = 4V0

ab

∫ a

0
sin(nπy/a) dy

∫ b

0
sin(mπ z/b) dz

=

⎧⎪⎨
⎪⎩

0, if n or m is even,

16V0

π2nm
, if n and m are odd.

(3.51)

In this case

V (x, y, z) = 16V0

π2

∞∑
n,m=1,3,5...

1

nm
e−π

√
(n/a)2+(m/b)2 x sin(nπy/a) sin(mπ z/b).

(3.52)
Notice that the successive terms decrease rapidly; a reasonable approximation
would be obtained by keeping only the first few.

Problem 3.13 Find the potential in the infinite slot of Ex. 3.3 if the boundary at
x = 0 consists of two metal strips: one, from y = 0 to y = a/2, is held at a constant
potential V0, and the other, from y = a/2 to y = a, is at potential −V0.

Problem 3.14 For the infinite slot (Ex. 3.3), determine the charge density σ(y) on
the strip at x = 0, assuming it is a conductor at constant potential V0.

Problem 3.15 A rectangular pipe, running parallel to the z-axis (from −∞ to +∞),
has three grounded metal sides, at y = 0, y = a, and x = 0. The fourth side, at
x = b, is maintained at a specified potential V0(y).

(a) Develop a general formula for the potential inside the pipe.

(b) Find the potential explicitly, for the case V0(y) = V0 (a constant).
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Problem 3.16 A cubical box (sides of length a) consists of five metal plates, which
are welded together and grounded (Fig. 3.23). The top is made of a separate sheet
of metal, insulated from the others, and held at a constant potential V0. Find the
potential inside the box. [What should the potential at the center (a/2, a/2, a/2)

be? Check numerically that your formula is consistent with this value.]11

y

z

x

V0

a

a

a

FIGURE 3.23

3.3.2 Spherical Coordinates

In the examples considered so far, Cartesian coordinates were clearly appropriate,
since the boundaries were planes. For round objects, spherical coordinates are
more natural. In the spherical system, Laplace’s equation reads:

1

r2

∂

∂r

(
r2 ∂V

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
+ 1

r2 sin2 θ

∂2V

∂φ2
= 0. (3.53)

I shall assume the problem has azimuthal symmetry, so that V is independent of
φ;12 in that case, Eq. 3.53 reduces to

∂

∂r

(
r2 ∂V

∂r

)
+ 1

sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
= 0. (3.54)

As before, we look for solutions that are products:

V (r, θ) = R(r)�(θ). (3.55)

Putting this into Eq. 3.54, and dividing by V ,

1

R

d

dr

(
r2 d R

dr

)
+ 1

� sin θ

d

dθ

(
sin θ

d�

dθ

)
= 0. (3.56)

11This cute test was suggested by J. Castro.
12The general case, for φ-dependent potentials, is treated in all the graduate texts. See, for instance,
J. D. Jackson’s Classical Electrodynamics, 3rd ed. (New York: John Wiley, 1999), Chapter 3.
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Since the first term depends only on r , and the second only on θ , it follows that
each must be a constant:

1

R

d

dr

(
r2 d R

dr

)
= l(l + 1),

1

� sin θ

d

dθ

(
sin θ

d�

dθ

)
= −l(l + 1). (3.57)

Here l(l + 1) is just a fancy way of writing the separation constant—you’ll see in
a minute why this is convenient.

As always, separation of variables has converted a partial differential equation
(3.54) into ordinary differential equations (3.57). The radial equation,

d

dr

(
r2 d R

dr

)
= l(l + 1)R, (3.58)

has the general solution

R(r) = Arl + B

rl+1
, (3.59)

as you can easily check; A and B are the two arbitrary constants to be expected
in the solution of a second-order differential equation. But the angular equation,

d

dθ

(
sin θ

d�

dθ

)
= −l(l + 1) sin θ �, (3.60)

is not so simple. The solutions are Legendre polynomials in the variable cos θ :

�(θ) = Pl(cos θ). (3.61)

Pl(x) is most conveniently defined by the Rodrigues formula:

Pl(x) ≡ 1

2l l!
(

d

dx

)l

(x2 − 1)l . (3.62)

The first few Legendre polynomials are listed in Table 3.1.

P0(x) = 1

P1(x) = x

P2(x) = (3x2 − 1)/2

P3(x) = (5x3 − 3x)/2

P4(x) = (35x4 − 30x2 + 3)/8

P5(x) = (63x5 − 70x3 + 15x)/8

TABLE 3.1 Legendre Polynomials.
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Notice that Pl(x) is (as the name suggests) an lth-order polynomial in x ; it con-
tains only even powers, if l is even, and odd powers, if l is odd. The factor in front
(1/2l l!) was chosen in order that

Pl(1) = 1. (3.63)

The Rodrigues formula obviously works only for nonnegative integer values
of l. Moreover, it provides us with only one solution. But Eq. 3.60 is second-
order, and it should possess two independent solutions, for every value of l. It
turns out that these “other solutions” blow up at θ = 0 and/or θ = π , and are
therefore unacceptable on physical grounds.13 For instance, the second solution
for l = 0 is

�(θ) = ln

(
tan

θ

2

)
. (3.64)

You might want to check for yourself that this satisfies Eq. 3.60.
In the case of azimuthal symmetry, then, the most general separable solution

to Laplace’s equation, consistent with minimal physical requirements, is

V (r, θ) =
(

Arl + B

rl+1

)
Pl(cos θ).

(There was no need to include an overall constant in Eq. 3.61 because it can be
absorbed into A and B at this stage.) As before, separation of variables yields an
infinite set of solutions, one for each l. The general solution is the linear combi-
nation of separable solutions:

V (r, θ) =
∞∑

l=0

(
Alr

l + Bl

rl+1

)
Pl(cos θ). (3.65)

The following examples illustrate the power of this important result.

Example 3.6. The potential V0(θ) is specified on the surface of a hollow sphere,
of radius R. Find the potential inside the sphere.

Solution
In this case, Bl = 0 for all l—otherwise the potential would blow up at the origin.
Thus,

V (r, θ) =
∞∑

l=0

Alr
l Pl(cos θ). (3.66)

13In rare cases where the z axis is excluded, these “other solutions” do have to be considered.
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At r = R this must match the specified function V0(θ):

V (R, θ) =
∞∑

l=0

Al Rl Pl(cos θ) = V0(θ). (3.67)

Can this equation be satisfied, for an appropriate choice of coefficients Al? Yes:
The Legendre polynomials (like the sines) constitute a complete set of functions,
on the interval −1 ≤ x ≤ 1 (0 ≤ θ ≤ π). How do we determine the constants?
Again, by Fourier’s trick, for the Legendre polynomials (like the sines) are or-
thogonal functions:14

∫ 1

−1
Pl(x)Pl ′(x) dx =

∫ π

0
Pl(cos θ)Pl ′(cos θ) sin θ dθ

=

⎧⎪⎨
⎪⎩

0, if l ′ �= l,

2

2l + 1
, if l ′ = l.

(3.68)

Thus, multiplying Eq. 3.67 by Pl ′(cos θ) sin θ and integrating, we have

Al ′ R
l ′ 2

2l ′ + 1
=

∫ π

0
V0(θ)Pl ′(cos θ) sin θ dθ,

or

Al = 2l + 1

2Rl

∫ π

0
V0(θ)Pl(cos θ) sin θ dθ. (3.69)

Equation 3.66 is the solution to our problem, with the coefficients given by
Eq. 3.69.

It can be difficult to evaluate integrals of the form 3.69 analytically, and in
practice it is often easier to solve Eq. 3.67 “by eyeball.”15 For instance, suppose
we are told that the potential on the sphere is

V0(θ) = k sin2(θ/2), (3.70)

where k is a constant. Using the half-angle formula, we rewrite this as

V0(θ) = k

2
(1 − cos θ) = k

2
[P0(cos θ) − P1(cos θ)].

14M. Boas, Mathematical Methods in the Physical Sciences, 2nd ed. (New York: John Wiley, 1983),
Section 12.7.
15This is certainly true whenever V0(θ) can be expressed as a polynomial in cos θ . The degree of the
polynomial tells us the highest l we require, and the leading coefficient determines the corresponding
Al . Subtracting off Al Rl Pl (cos θ) and repeating the process, we systematically work our way down
to A0. Notice that if V0 is an even function of cos θ , then only even terms will occur in the sum (and
likewise for odd functions).
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Putting this into Eq. 3.67, we read off immediately that A0 = k/2, A1 = −k/(2R),
and all other Al ’s vanish. Therefore,

V (r, θ) = k

2

[
r0 P0(cos θ) − r1

R
P1(cos θ)

]
= k

2

(
1 − r

R
cos θ

)
. (3.71)

Example 3.7. The potential V0(θ) is again specified on the surface of a sphere of
radius R, but this time we are asked to find the potential outside, assuming there
is no charge there.

Solution
In this case it’s the Al’s that must be zero (or else V would not go to zero at ∞), so

V (r, θ) =
∞∑

l=0

Bl

rl+1
Pl(cos θ). (3.72)

At the surface of the sphere, we require that

V (R, θ) =
∞∑

l=0

Bl

Rl+1
Pl(cos θ) = V0(θ).

Multiplying by Pl ′(cos θ) sin θ and integrating—exploiting, again, the orthogo-
nality relation 3.68—we have

Bl ′

Rl ′+1

2

2l ′ + 1
=

∫ π

0
V0(θ)Pl ′(cos θ) sin θ dθ,

or

Bl = 2l + 1

2
Rl+1

∫ π

0
V0(θ)Pl(cos θ) sin θ dθ. (3.73)

Equation 3.72, with the coefficients given by Eq. 3.73, is the solution to our
problem.

Example 3.8. An uncharged metal sphere of radius R is placed in an other-
wise uniform electric field E = E0ẑ. The field will push positive charge to the
“northern” surface of the sphere, and—symmetrically—negative charge to the
“southern” surface (Fig. 3.24). This induced charge, in turn, distorts the field in
the neighborhood of the sphere. Find the potential in the region outside the sphere.
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Solution
The sphere is an equipotential—we may as well set it to zero. Then by symmetry
the entire xy plane is at potential zero. This time, however, V does not go to zero
at large z. In fact, far from the sphere the field is E0ẑ, and hence

V → −E0z + C.

−−−

+++

− −−
−−

++++ +

y

z

x

R

FIGURE 3.24

Since V = 0 in the equatorial plane, the constant C must be zero. Accordingly,
the boundary conditions for this problem are

(i) V = 0 when r = R,
(ii) V → −E0r cos θ for r � R.

}
(3.74)

We must fit these boundary conditions with a function of the form 3.65.
The first condition yields

Al Rl + Bl

Rl+1
= 0,

or

Bl = −Al R2l+1, (3.75)

so

V (r, θ) =
∞∑

l=0

Al

(
rl − R2l+1

rl+1

)
Pl(cos θ).

For r � R, the second term in parentheses is negligible, and therefore condition
(ii) requires that

∞∑
l=0

Alr
l Pl(cos θ) = −E0r cos θ.
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Evidently only one term is present: l = 1. In fact, since P1(cos θ) = cos θ , we can
read off immediately

A1 = −E0, all other Al’s zero.

Conclusion:

V (r, θ) = −E0

(
r − R3

r2

)
cos θ. (3.76)

The first term (−E0r cos θ) is due to the external field; the contribution
attributable to the induced charge is

E0
R3

r2
cos θ.

If you want to know the induced charge density, it can be calculated in the usual
way:

σ(θ) = − ε0
∂V

∂r

∣∣∣∣
r=R

= ε0 E0

(
1 + 2

R3

r3

)
cos θ

∣∣∣∣
r=R

= 3ε0 E0 cos θ. (3.77)

As expected, it is positive in the “northern” hemisphere (0 ≤ θ ≤ π/2) and neg-
ative in the “southern” (π/2 ≤ θ ≤ π).

Example 3.9. A specified charge density σ0(θ) is glued over the surface of a
spherical shell of radius R. Find the resulting potential inside and outside the
sphere.

Solution
You could, of course, do this by direct integration:

V = 1

4πε0

∫
σ0

r da,

but separation of variables is often easier. For the interior region, we have

V (r, θ) =
∞∑

l=0

Alr
l Pl(cos θ) (r ≤ R) (3.78)

(no Bl terms—they blow up at the origin); in the exterior region

V (r, θ) =
∞∑

l=0

Bl

rl+1
Pl(cos θ) (r ≥ R) (3.79)

(no Al terms—they don’t go to zero at infinity). These two functions must be
joined together by the appropriate boundary conditions at the surface itself. First,
the potential is continuous at r = R (Eq. 2.34):
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∞∑
l=0

Al Rl Pl(cos θ) =
∞∑

l=0

Bl

Rl+1
Pl(cos θ). (3.80)

It follows that the coefficients of like Legendre polynomials are equal:

Bl = Al R2l+1. (3.81)

(To prove that formally, multiply both sides of Eq. 3.80 by Pl ′(cos θ) sin θ and
integrate from 0 to π , using the orthogonality relation 3.68.) Second, the radial
derivative of V suffers a discontinuity at the surface (Eq. 2.36):

(
∂Vout

∂r
− ∂Vin

∂r

)∣∣∣∣
r=R

= − 1

ε0
σ0(θ). (3.82)

Thus

−
∞∑

l=0

(l + 1)
Bl

Rl+2
Pl(cos θ) −

∞∑
l=0

l Al Rl−1 Pl(cos θ) = − 1

ε0
σ0(θ),

or, using Eq. 3.81,

∞∑
l=0

(2l + 1)Al Rl−1 Pl(cos θ) = 1

ε0
σ0(θ). (3.83)

From here, the coefficients can be determined using Fourier’s trick:

Al = 1

2ε0 Rl−1

∫ π

0
σ0(θ)Pl(cos θ) sin θ dθ. (3.84)

Equations 3.78 and 3.79 constitute the solution to our problem, with the coeffi-
cients given by Eqs. 3.81 and 3.84.

For instance, if

σ0(θ) = k cos θ = k P1(cos θ), (3.85)

for some constant k, then all the Al’s are zero except for l = 1, and

A1 = k

2ε0

∫ π

0
[P1(cos θ)]2 sin θ dθ = k

3ε0
.

The potential inside the sphere is therefore

V (r, θ) = k

3ε0
r cos θ (r ≤ R), (3.86)
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whereas outside the sphere

V (r, θ) = k R3

3ε0

1

r2
cos θ (r ≥ R). (3.87)

In particular, if σ0(θ) is the induced charge on a metal sphere in an external
field E0ẑ, so that k = 3ε0 E0 (Eq. 3.77), then the potential inside is E0r cos θ =
E0z, and the field is −E0ẑ—exactly right to cancel off the external field, as of
course it should be. Outside the sphere the potential due to this surface charge is

E0
R3

r2
cos θ,

consistent with our conclusion in Ex. 3.8.

Problem 3.17 Derive P3(x) from the Rodrigues formula, and check that P3(cos θ)

satisfies the angular equation (3.60) for l = 3. Check that P3 and P1 are orthogonal
by explicit integration.

Problem 3.18

(a) Suppose the potential is a constant V0 over the surface of the sphere. Use the
results of Ex. 3.6 and Ex. 3.7 to find the potential inside and outside the sphere.
(Of course, you know the answers in advance—this is just a consistency check
on the method.)

(b) Find the potential inside and outside a spherical shell that carries a uniform
surface charge σ0, using the results of Ex. 3.9.

Problem 3.19 The potential at the surface of a sphere (radius R) is given by

V0 = k cos 3θ,

where k is a constant. Find the potential inside and outside the sphere, as well as
the surface charge density σ(θ) on the sphere. (Assume there’s no charge inside or
outside the sphere.)

Problem 3.20 Suppose the potential V0(θ) at the surface of a sphere is specified,
and there is no charge inside or outside the sphere. Show that the charge density on
the sphere is given by

σ(θ) = ε0

2R

∞∑
l=0

(2l + 1)2Cl Pl(cos θ), (3.88)

where

Cl =
∫ π

0
V0(θ)Pl(cos θ) sin θ dθ. (3.89)
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Problem 3.21 Find the potential outside a charged metal sphere (charge Q, radius
R) placed in an otherwise uniform electric field E0. Explain clearly where you are
setting the zero of potential.

Problem 3.22 In Prob. 2.25, you found the potential on the axis of a uniformly
charged disk:

V (r, 0) = σ

2ε0

(√
r 2 + R2 − r

)
.

(a) Use this, together with the fact that Pl(1) = 1, to evaluate the first three terms
in the expansion (Eq. 3.72) for the potential of the disk at points off the axis,
assuming r > R.

(b) Find the potential for r < R by the same method, using Eq. 3.66. [Note: You
must break the interior region up into two hemispheres, above and below the
disk. Do not assume the coefficients Al are the same in both hemispheres.]

Problem 3.23 A spherical shell of radius R carries a uniform surface charge σ0

on the “northern” hemisphere and a uniform surface charge −σ0 on the “southern”
hemisphere. Find the potential inside and outside the sphere, calculating the coeffi-
cients explicitly up to A6 and B6.

Problem 3.24 Solve Laplace’s equation by separation of variables in cylindrical•
coordinates, assuming there is no dependence on z (cylindrical symmetry). [Make
sure you find all solutions to the radial equation; in particular, your result must
accommodate the case of an infinite line charge, for which (of course) we already
know the answer.]

Problem 3.25 Find the potential outside an infinitely long metal pipe, of radius R,
placed at right angles to an otherwise uniform electric field E0. Find the surface
charge induced on the pipe. [Use your result from Prob. 3.24.]

Problem 3.26 Charge density

σ(φ) = a sin 5φ

(where a is a constant) is glued over the surface of an infinite cylinder of radius R
(Fig. 3.25). Find the potential inside and outside the cylinder. [Use your result from
Prob. 3.24.]

x

y

z

R

φ

FIGURE 3.25
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3.4 MULTIPOLE EXPANSION

3.4.1 Approximate Potentials at Large Distances

If you are very far away from a localized charge distribution, it “looks” like a point
charge, and the potential is—to good approximation—(1/4πε0)Q/r , where Q is
the total charge. We have often used this as a check on formulas for V . But what
if Q is zero? You might reply that the potential is then approximately zero, and of
course, you’re right, in a sense (indeed, the potential at large r is pretty small even
if Q is not zero). But we’re looking for something a bit more informative than that.

Example 3.10. A (physical) electric dipole consists of two equal and opposite
charges (±q) separated by a distance d. Find the approximate potential at points
far from the dipole.

Solution
Let r− be the distance from −q and r+ the distance from +q (Fig. 3.26). Then

V (r) = 1

4πε0

(
q

r+
− q

r−

)
,

and (from the law of cosines)

r2± = r2 + (d/2)2 ∓ rd cos θ = r2

(
1 ∓ d

r
cos θ + d2

4r2

)
.

We’re interested in the régime r � d, so the third term is negligible, and the
binomial expansion yields

1

r±
∼= 1

r

(
1 ∓ d

r
cos θ

)−1/2 ∼= 1

r

(
1 ± d

2r
cos θ

)
.

Thus

1

r+
− 1

r−
∼= d

r2
cos θ,

−q

d

+q
θ

r

r+

r−

FIGURE 3.26
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and hence

V (r) ∼= 1

4πε0

qd cos θ

r2
. (3.90)

The potential of a dipole goes like 1/r2 at large r ; as we might have anticipated,
it falls off more rapidly than the potential of a point charge. If we put together
a pair of equal and opposite dipoles to make a quadrupole, the potential goes
like 1/r3; for back-to-back quadrupoles (an octopole), it goes like 1/r4; and so
on. Figure 3.27 summarizes this hierarchy; for completeness I have included the
electric monopole (point charge), whose potential, of course, goes like 1/r .

−
−

−
−+

+
+

+

+ +−

− +

+ −

Quadrupole
(V ~ 1/r3)

Octopole
(V ~ 1/r4)

Monopole
(V ~ 1/r)

Dipole
(V ~ 1/r2)

FIGURE 3.27

Example 3.10 pertains to a very special charge configuration. I propose now to
develop a systematic expansion for the potential of any localized charge distribu-
tion, in powers of 1/r . Figure 3.28 defines the relevant variables; the potential at
r is given by

V (r) = 1

4πε0

∫
1

r ρ(r′) dτ ′. (3.91)

Using the law of cosines,

r2 = r2 + (r ′)2 − 2rr ′ cos α = r2

[
1 +

(
r ′

r

)2

− 2

(
r ′

r

)
cos α

]
,

where α is the angle between r and r′. Thus

r = r
√

1 + ε, (3.92)

dτ′
r

rr′

P

α

FIGURE 3.28
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with

ε ≡
(

r ′

r

)(
r ′

r
− 2 cos α

)
.

For points well outside the charge distribution, ε is much less than 1, and this
invites a binomial expansion:

1

r = 1

r
(1 + ε)−1/2 = 1

r

(
1 − 1

2
ε + 3

8
ε2 − 5

16
ε3 + . . .

)
, (3.93)

or, in terms of r , r ′, and α:

1

r = 1

r

[
1 − 1

2

(
r ′

r

)(
r ′

r
− 2 cos α

)
+ 3

8

(
r ′

r

)2 (r ′

r
− 2 cos α

)2

− 5

16

(
r ′

r

)3 (r ′

r
− 2 cos α

)3

+ . . .

]

= 1

r

[
1 +

(
r ′

r

)
(cos α) +

(
r ′

r

)2 (3 cos2 α − 1

2

)

+
(

r ′

r

)3 (5 cos3 α − 3 cos α

2

)
+ . . .

]
.

In the last step, I have collected together like powers of (r ′/r); surprisingly, their
coefficients (the terms in parentheses) are Legendre polynomials! The remarkable
result16 is that

1

r = 1

r

∞∑
n=0

(
r ′

r

)n

Pn(cos α). (3.94)

Substituting this back into Eq. 3.91, and noting that r is a constant, as far as the
integration is concerned, I conclude that

V (r) = 1

4πε0

∞∑
n=0

1

r (n+1)

∫
(r ′)n Pn(cos α)ρ(r′) dτ ′, (3.95)

or, more explicitly,

V (r) = 1

4πε0

[
1

r

∫
ρ(r′) dτ ′ + 1

r2

∫
r ′ cos α ρ(r′) dτ ′

+ 1

r3

∫
(r ′)2

(
3

2
cos2 α − 1

2

)
ρ(r′) dτ ′ + . . .

]
. (3.96)

16This suggests a second way of defining the Legendre polynomials (the first being Rodrigues’ for-
mula); 1/r is called the generating function for Legendre polynomials.
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This is the desired result—the multipole expansion of V in powers of 1/r .
The first term (n = 0) is the monopole contribution (it goes like 1/r ); the sec-
ond (n = 1) is the dipole (it goes like 1/r2); the third is quadrupole; the fourth
octopole; and so on. Remember that α is the angle between r and r′, so the inte-
grals depend on the direction to the field point. If you are interested in the poten-
tial along the z′ axis (or—putting it the other way around—if you orient your r′
coordinates so the z′ axis lies along r), then α is the usual polar angle θ ′.

As it stands, Eq. 3.95 is exact, but it is useful primarily as an approxima-
tion scheme: the lowest nonzero term in the expansion provides the approximate
potential at large r , and the successive terms tell us how to improve the approxi-
mation if greater precision is required.

Problem 3.27 A sphere of radius R, centered at the origin, carries charge density

ρ(r, θ) = k
R

r 2
(R − 2r) sin θ,

where k is a constant, and r , θ are the usual spherical coordinates. Find the approx-
imate potential for points on the z axis, far from the sphere.

Problem 3.28 A circular ring in the xy plane (radius R, centered at the origin) carries
a uniform line charge λ. Find the first three terms (n = 0, 1, 2) in the multipole
expansion for V (r, θ).

3.4.2 The Monopole and Dipole Terms

Ordinarily, the multipole expansion is dominated (at large r ) by the monopole
term:

Vmon(r) = 1

4πε0

Q

r
, (3.97)

where Q = ∫
ρ dτ is the total charge of the configuration. This is just what we

expect for the approximate potential at large distances from the charge. For a point
charge at the origin, Vmon is the exact potential, not merely a first approximation
at large r ; in this case, all the higher multipoles vanish.

If the total charge is zero, the dominant term in the potential will be the dipole
(unless, of course, it also vanishes):

Vdip(r) = 1

4πε0

1

r2

∫
r ′ cos α ρ(r′) dτ ′.

Since α is the angle between r′ and r (Fig. 3.28),

r ′ cos α = r̂ · r′,

and the dipole potential can be written more succinctly:

Vdip(r) = 1

4πε0

1

r2
r̂ ·

∫
r′ρ(r′) dτ ′.
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This integral (which does not depend on r) is called the dipole moment of the
distribution:

p ≡
∫

r′ρ(r′) dτ ′, (3.98)

and the dipole contribution to the potential simplifies to

Vdip(r) = 1

4πε0

p · r̂
r2

. (3.99)

The dipole moment is determined by the geometry (size, shape, and density)
of the charge distribution. Equation 3.98 translates in the usual way (Sect. 2.1.4)
for point, line, and surface charges. Thus, the dipole moment of a collection of
point charges is

p =
n∑

i=1

qi r′
i . (3.100)

For a physical dipole (equal and opposite charges, ±q),

p = qr′
+ − qr′

− = q(r′
+ − r′

−) = qd, (3.101)

where d is the vector from the negative charge to the positive one (Fig. 3.29).
Is this consistent with what we got in Ex. 3.10? Yes: If you put Eq. 3.101 into

Eq. 3.99, you recover Eq. 3.90. Notice, however, that this is only the approximate
potential of the physical dipole—evidently there are higher multipole contribu-
tions. Of course, as you go farther and farther away, Vdip becomes a better and
better approximation, since the higher terms die off more rapidly with increas-
ing r . By the same token, at a fixed r the dipole approximation improves as you
shrink the separation d. To construct a perfect (point) dipole whose potential is
given exactly by Eq. 3.99, you’d have to let d approach zero. Unfortunately, you
then lose the dipole term too, unless you simultaneously arrange for q to go to in-
finity! A physical dipole becomes a pure dipole, then, in the rather artificial limit
d → 0, q → ∞, with the product qd = p held fixed. When someone uses the
word “dipole,” you can’t always tell whether they mean a physical dipole (with

y

z

x

+q
−q

r′−
r′+

d

FIGURE 3.29
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+q

−q

−q

+q

FIGURE 3.30

finite separation between the charges) or an ideal (point) dipole. If in doubt, as-
sume that d is small enough (compared to r ) that you can safely apply Eq. 3.99.

Dipole moments are vectors, and they add accordingly: if you have two
dipoles, p1 and p2, the total dipole moment is p1 + p2. For instance, with four
charges at the corners of a square, as shown in Fig. 3.30, the net dipole moment is
zero. You can see this by combining the charges in pairs (vertically, ↓ + ↑= 0,
or horizontally, → + ← = 0) or by adding up the four contributions individually,
using Eq. 3.100. This is a quadrupole, as I indicated earlier, and its potential is
dominated by the quadrupole term in the multipole expansion.

Problem 3.29 Four particles (one of charge q , one of charge 3q , and two of charge
−2q) are placed as shown in Fig. 3.31, each a distance a from the origin. Find a
simple approximate formula for the potential, valid at points far from the origin.
(Express your answer in spherical coordinates.)

y

3q

−2q−2q

x

z

q

a

a

aa

FIGURE 3.31

Problem 3.30 In Ex. 3.9, we derived the exact potential for a spherical shell of
radius R, which carries a surface charge σ = k cos θ.

(a) Calculate the dipole moment of this charge distribution.

(b) Find the approximate potential, at points far from the sphere, and compare the
exact answer (Eq. 3.87). What can you conclude about the higher multipoles?

Problem 3.31 For the dipole in Ex. 3.10, expand 1/r± to order (d/r)3, and use this
to determine the quadrupole and octopole terms in the potential.
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3.4.3 Origin of Coordinates in Multipole Expansions

I mentioned earlier that a point charge at the origin constitutes a “pure” monopole.
If it is not at the origin, it’s no longer a pure monopole. For instance, the charge
in Fig. 3.32 has a dipole moment p = qdŷ, and a corresponding dipole term in
its potential. The monopole potential (1/4πε0)q/r is not quite correct for this
configuration; rather, the exact potential is (1/4πε0)q/r. The multipole expansion
is, remember, a series in inverse powers of r (the distance to the origin), and when
we expand 1/r, we get all powers, not just the first.

So moving the origin (or, what amounts to the same thing, moving the charge)
can radically alter a multipole expansion. The monopole moment Q does not
change, since the total charge is obviously independent of the coordinate system.
(In Fig. 3.32, the monopole term was unaffected when we moved q away from
the origin—it’s just that it was no longer the whole story: a dipole term—and for
that matter all higher poles—appeared as well.) Ordinarily, the dipole moment
does change when you shift the origin, but there is an important exception: If the
total charge is zero, then the dipole moment is independent of the choice of origin.
For suppose we displace the origin by an amount a (Fig. 3.33). The new dipole
moment is then

p̄ =
∫

r̄′ρ(r′) dτ ′ =
∫

(r′ − a)ρ(r′) dτ ′

=
∫

r′ρ(r′) dτ ′ − a
∫

ρ(r′) dτ ′ = p − Qa.
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In particular, if Q = 0, then p̄ = p. So if someone asks for the dipole moment
in Fig. 3.34(a), you can answer with confidence “qd,” but if you’re asked for the
dipole moment in Fig. 3.34(b), the appropriate response would be “With respect
to what origin?”

(b)(a)

−q

−q

q

a a

aq q
d

FIGURE 3.34
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Problem 3.32 Two point charges, 3q and −q , are separated by a distance a. For
each of the arrangements in Fig. 3.35, find (i) the monopole moment, (ii) the dipole
moment, and (iii) the approximate potential (in spherical coordinates) at large r
(include both the monopole and dipole contributions).
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3q

−q
−q

a
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z

(a)

y
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a
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−q

(b)

y3qa

x

z

(c)

FIGURE 3.35

3.4.4 The Electric Field of a Dipole

So far we have worked only with potentials. Now I would like to calculate the
electric field of a (perfect) dipole. If we choose coordinates so that p is at the origin
and points in the z direction (Fig. 3.36), then the potential at r, θ is (Eq. 3.99):

Vdip(r, θ) = r̂ · p
4πε0r2

= p cos θ

4πε0r2
. (3.102)

To get the field, we take the negative gradient of V :

Er = −∂V

∂r
= 2p cos θ

4πε0r3
,

Eθ = −1

r

∂V

∂θ
= p sin θ

4πε0r3
,

Eφ = − 1

r sin θ

∂V

∂φ
= 0.

Thus

Edip(r, θ) = p

4πε0r3
(2 cos θ r̂ + sin θ θ̂). (3.103)
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This formula makes explicit reference to a particular coordinate system (spher-
ical) and assumes a particular orientation for p (along z). It can be recast in a
coordinate-free form, analogous to the potential in Eq. 3.99—see Prob. 3.36.

Notice that the dipole field falls off as the inverse cube of r ; the monopole field
(Q/4πε0r2)r̂ goes as the inverse square, of course. Quadrupole fields go like
1/r4, octopole like 1/r5, and so on. (This merely reflects the fact that monopole
potentials fall off like 1/r , dipole like 1/r2, quadrupole like 1/r3, and so on—the
gradient introduces another factor of 1/r .)

Figure 3.37(a) shows the field lines of a “pure” dipole (Eq. 3.103). For com-
parison, I have also sketched the field lines for a “physical” dipole, in Fig. 3.37(b).
Notice how similar the two pictures become if you blot out the central region; up
close, however, they are entirely different. Only for points r � d does Eq. 3.103
represent a valid approximation to the field of a physical dipole. As I mentioned
earlier, this régime can be reached either by going to large r or by squeezing the
charges very close together.17

y

z

y

z

(a)  Field of a “pure” dipole (b)  Field of a “physical” dipole

FIGURE 3.37

17Even in the limit, there remains an infinitesimal region at the origin where the field of a physical
dipole points in the “wrong” direction, as you can see by “walking” down the z axis in Fig. 3.35(b). If
you want to explore this subtle and important point, work Prob. 3.48.
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Problem 3.33 A “pure” dipole p is situated at the origin, pointing in the z direction.

(a) What is the force on a point charge q at (a, 0, 0) (Cartesian coordinates)?

(b) What is the force on q at (0, 0, a)?

(c) How much work does it take to move q from (a, 0, 0) to (0, 0, a)?

Problem 3.34 Three point charges are located as shown in Fig. 3.38, each a distance
a from the origin. Find the approximate electric field at points far from the origin.
Express your answer in spherical coordinates, and include the two lowest orders in
the multipole expansion.

y

q

−q−q

x

z

a a
a

FIGURE 3.38

Problem 3.35 A solid sphere, radius R, is centered at the origin. The “northern”
hemisphere carries a uniform charge density ρ0, and the “southern” hemisphere a
uniform charge density −ρ0. Find the approximate field E(r, θ) for points far from
the sphere (r � R).

Problem 3.36 Show that the electric field of a (perfect) dipole (Eq. 3.103) can be•
written in the coordinate-free form

Edip(r) = 1

4πε0

1

r 3
[3(p · r̂)r̂ − p]. (3.104)

More Problems on Chapter 3

Problem 3.37 In Section 3.1.4, I proved that the electrostatic potential at any point
P in a charge-free region is equal to its average value over any spherical surface
(radius R) centered at P. Here’s an alternative argument that does not rely on
Coulomb’s law, only on Laplace’s equation. We might as well set the origin at P.
Let Vave(R) be the average; first show that

dVave

d R
= 1

4π R2

∮
∇V · da

(note that the R2 in da cancels the 1/R2 out front, so the only dependence on R
is in V itself). Now use the divergence theorem, and conclude that if V satisfies
Laplace’s equation, then Vave(R) = Vave(0) = V (P), for all R.18

18I thank Ted Jacobson for suggesting this proof.
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Problem 3.38 Here’s an alternative derivation of Eq. 3.10 (the surface charge den-
sity induced on a grounded conducted plane by a point charge q a distance d above
the plane). This approach19 (which generalizes to many other problems) does not
rely on the method of images. The total field is due in part to q , and in part to the
induced surface charge. Write down the z components of these fields—in terms of
q and the as-yet-unknown σ(x, y)—just below the surface. The sum must be zero,
of course, because this is inside a conductor. Use that to determine σ .

Problem 3.39 Two infinite parallel grounded conducting planes are held a distance
a apart. A point charge q is placed in the region between them, a distance x from
one plate. Find the force on q.20 Check that your answer is correct for the special
cases a → ∞ and x = a/2.

Problem 3.40 Two long straight wires, carrying opposite uniform line charges ±λ,
are situated on either side of a long conducting cylinder (Fig. 3.39). The cylinder
(which carries no net charge) has radius R, and the wires are a distance a from the
axis. Find the potential.

[
Answer: V (s, φ) = λ

4πε0
ln

{
(s2 + a2 + 2sa cos φ)[(sa/R)2 + R2 − 2sa cos φ]
(s2 + a2 − 2sa cos φ)[(sa/R)2 + R2 + 2sa cos φ]

}]

R λ−λ
a

s
r

a
φ

FIGURE 3.39

Problem 3.41 Buckminsterfullerine is a molecule of 60 carbon atoms arranged
like the stitching on a soccer-ball. It may be approximated as a conducting spher-
ical shell of radius R = 3.5 Å. A nearby electron would be attracted, according to
Prob. 3.9, so it is not surprising that the ion C−

60 exists. (Imagine that the electron—
on average—smears itself out uniformly over the surface.) But how about a second
electron? At large distances it would be repelled by the ion, obviously, but at a cer-
tain distance r (from the center), the net force is zero, and closer than this it would
be attracted. So an electron with enough energy to get in that close should bind.

(a) Find r , in Å. [You’ll have to do it numerically.]

(b) How much energy (in electron volts) would it take to push an electron in (from
infinity) to the point r?

[Incidentally, the C−−
60 ion has been observed.]21

19See J. L. R. Marrero, Am. J. Phys. 78, 639 (2010).
20Obtaining the induced surface charge is not so easy. See B. G. Dick, Am. J. Phys. 41, 1289 (1973),
M. Zahn, Am. J. Phys. 44, 1132 (1976), J. Pleines and S. Mahajan, Am. J. Phys. 45, 868 (1977), and
Prob. 3.51 below.
21Richard Mawhorter suggested this problem.



162 Chapter 3 Potentials

Problem 3.42 You can use the superposition principle to combine solutions
obtained by separation of variables. For example, in Prob. 3.16 you found the
potential inside a cubical box, if five faces are grounded and the sixth is at a con-
stant potential V0; by a six-fold superposition of the result, you could obtain the
potential inside a cube with the faces maintained at specified constant voltages V1,
V2, . . . V6. In this way, using Ex. 3.4 and Prob. 3.15, find the potential inside a
rectangular pipe with two facing sides (x = ±b) at potential V0, a third (y = a) at
V1, and the last (at y = 0) grounded.

Problem 3.43 A conducting sphere of radius a, at potential V0, is surrounded by a
thin concentric spherical shell of radius b, over which someone has glued a surface
charge

σ(θ) = k cos θ,

where k is a constant and θ is the usual spherical coordinate.

(a) Find the potential in each region: (i) r > b, and (ii) a < r < b.

(b) Find the induced surface charge σi (θ) on the conductor.

(c) What is the total charge of this system? Check that your answer is consistent
with the behavior of V at large r .

⎡
⎣Answer: V (r, θ) =

⎧⎨
⎩

aV0/r + (b3 − a3)k cos θ/3r 2ε0, r ≥ b

aV0/r + (r 3 − a3)k cos θ/3r 2ε0, r ≤ b

⎤
⎦

Problem 3.44 A charge +Q is distributed uniformly along the z axis from z = −a
to z = +a. Show that the electric potential at a point r is given by

V (r, θ) = Q

4πε0

1

r

[
1 + 1

3

(a

r

)2
P2(cos θ) + 1

5

(a

r

)4
P4(cos θ) + . . .

]
,

for r > a.

Problem 3.45 A long cylindrical shell of radius R carries a uniform surface charge
σ0 on the upper half and an opposite charge −σ0 on the lower half (Fig. 3.40). Find
the electric potential inside and outside the cylinder.

y

R
x

σ0

−σ0

FIGURE 3.40
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Problem 3.46 A thin insulating rod, running from z = −a to z = +a, carries the
indicated line charges. In each case, find the leading term in the multipole expansion
of the potential: (a) λ = k cos(π z/2a), (b) λ = k sin(π z/a), (c) λ = k cos(π z/a),
where k is a constant.

Problem 3.47 Show that the average field inside a sphere of radius R, due to all the•
charge within the sphere, is

Eave = − 1

4πε0

p
R3

, (3.105)

where p is the total dipole moment. There are several ways to prove this delightfully
simple result. Here’s one method:22

(a) Show that the average field due to a single charge q at point r inside the
sphere is the same as the field at r due to a uniformly charged sphere with
ρ = −q/( 4

3 π R3), namely

1

4πε0

1

( 4
3 π R3)

∫
q

r2
r̂ dτ ′,

where r is the vector from r to dτ ′.

(b) The latter can be found from Gauss’s law (see Prob. 2.12). Express the answer
in terms of the dipole moment of q .

(c) Use the superposition principle to generalize to an arbitrary charge distribution.

(d) While you’re at it, show that the average field over the volume of a sphere, due
to all the charges outside, is the same as the field they produce at the center.

Problem 3.48

(a) Using Eq. 3.103, calculate the average electric field of a dipole, over a spher-
ical volume of radius R, centered at the origin. Do the angular integrals first.
[Note: You must express r̂ and θ̂ in terms of x̂, ŷ, and ẑ (see back cover) before
integrating. If you don’t understand why, reread the discussion in Sect. 1.4.1.]
Compare your answer with the general theorem (Eq. 3.105). The discrepancy
here is related to the fact that the field of a dipole blows up at r = 0. The angular
integral is zero, but the radial integral is infinite, so we really don’t know what
to make of the answer. To resolve this dilemma, let’s say that Eq. 3.103 applies
outside a tiny sphere of radius ε—its contribution to Eave is then unambiguously
zero, and the whole answer has to come from the field inside the ε-sphere.

(b) What must the field inside the ε-sphere be, in order for the general theorem
(Eq. 3.105) to hold? [Hint: since ε is arbitrarily small, we’re talking about some-
thing that is infinite at r = 0 and whose integral over an infinitesimal volume is
finite.] [Answer: −(p/3ε0)δ

3(r)]

Evidently, the true field of a dipole is

Edip(r) = 1

4πε0

1

r 3
[3(p · r̂)r̂ − p] − 1

3ε0
p δ3(r). (3.106)

22Another method exploits the result of Prob. 3.4. See B. Y.-K. Hu, Eur. J. Phys. 30, L29 (2009).
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You may wonder how we missed the delta-function term23 when we calculated
the field back in Sect. 3.4.4. The answer is that the differentiation leading to
Eq. 3.103 is valid except at r = 0, but we should have known (from our experience
in Sect. 1.5.1) that the point r = 0 would be problematic.24

Problem 3.49 In Ex. 3.9, we obtained the potential of a spherical shell with surface
charge σ(θ) = k cos θ . In Prob. 3.30, you found that the field is pure dipole out-
side; it’s uniform inside (Eq. 3.86). Show that the limit R → 0 reproduces the delta
function term in Eq. 3.106.

Problem 3.50

(a) Suppose a charge distribution ρ1(r) produces a potential V1(r), and some other
charge distribution ρ2(r) produces a potential V2(r). [The two situations may
have nothing in common, for all I care—perhaps number 1 is a uniformly
charged sphere and number 2 is a parallel-plate capacitor. Please understand
that ρ1 and ρ2 are not present at the same time; we are talking about two differ-
ent problems, one in which only ρ1 is present, and another in which only ρ2 is
present.] Prove Green’s reciprocity theorem:25

∫
all space

ρ1V2 dτ =
∫

all space

ρ2V1 dτ.

[Hint: Evaluate
∫

E1 · E2 dτ two ways, first writing E1 = −∇V1 and using in-
tegration by parts to transfer the derivative to E2, then writing E2 = −∇V2 and
transferring the derivative to E1.]

(b) Suppose now that you have two separated conductors (Fig. 3.41). If you charge
up conductor a by amount Q (leaving b uncharged), the resulting potential of
b is, say, Vab. On the other hand, if you put that same charge Q on conductor b
(leaving a uncharged), the potential of a would be Vba . Use Green’s reciprocity
theorem to show that Vab = Vba (an astonishing result, since we assumed noth-
ing about the shapes or placement of the conductors).

a b

Q V

FIGURE 3.41

23There are other ways of getting the delta-function term in the field of a dipole—my own favorite is
Prob. 3.49. Note that unless you are right on top of the dipole, Eq. 3.104 is perfectly adequate.
24See C. P. Frahm, Am. J. Phys. 51, 826 (1983). For applications, see D. J. Griffiths, Am. J. Phys. 50,
698 (1982). There are other (perhaps preferable) ways of expressing the contact (delta-function) term
in Eq. 3.106; see A. Gsponer, Eur. J. Phys. 28, 267 (2007), J. Franklin, Am. J. Phys. 78, 1225 (2010),
and V. Hnizdo, Eur. J. Phys. 32, 287 (2011).
25For interesting commentary, see B. Y.-K. Hu, Am. J. Phys. 69, 1280 (2001).
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Problem 3.51 Use Green’s reciprocity theorem (Prob. 3.50) to solve the following
two problems. [Hint: for distribution 1, use the actual situation; for distribution 2,
remove q , and set one of the conductors at potential V0.]

(a) Both plates of a parallel-plate capacitor are grounded, and a point charge q is
placed between them at a distance x from plate 1. The plate separation is d. Find
the induced charge on each plate. [Answer: Q1 = q(x/d − 1); Q2 = −qx/d]

(b) Two concentric spherical conducting shells (radii a and b) are grounded, and a
point charge q is placed between them (at radius r ). Find the induced charge on
each sphere.

Problem 3.52

(a) Show that the quadrupole term in the multipole expansion can be written

Vquad(r) = 1

4πε0

1

r 3

3∑
i, j=1

r̂i r̂ j Qi j

(in the notation of Eq. 1.31), where

Qi j ≡ 1

2

∫
[3r ′

i r
′
j − (r ′)2δi j ]ρ(r′) dτ ′.

Here

δi j =
⎧⎨
⎩

1 if i = j

0 if i �= j

is the Kronecker delta, and Qi j is the quadrupole moment of the charge
distribution. Notice the hierarchy:

Vmon = 1

4πε0

Q

r
; Vdip = 1

4πε0

∑
r̂i pi

r 2
; Vquad = 1

4πε0

∑
r̂i r̂ j Qi j

r 3
; . . .

The monopole moment (Q) is a scalar, the dipole moment (p) is a vector, the
quadrupole moment (Qi j ) is a second-rank tensor, and so on.

(b) Find all nine components of Qi j for the configuration in Fig. 3.30 (assume the
square has side a and lies in the xy plane, centered at the origin).

(c) Show that the quadrupole moment is independent of origin if the monopole and
dipole moments both vanish. (This works all the way up the hierarchy—the
lowest nonzero multipole moment is always independent of origin.)

(d) How would you define the octopole moment? Express the octopole term in the
multipole expansion in terms of the octopole moment.

Problem 3.53 In Ex. 3.8 we determined the electric field outside a spherical conduc-
tor (radius R) placed in a uniform external field E0. Solve the problem now using
the method of images, and check that your answer agrees with Eq. 3.76. [Hint: Use
Ex. 3.2, but put another charge, −q, diametrically opposite q . Let a → ∞, with
(1/4πε0)(2q/a2) = −E0 held constant.]
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Problem 3.54 For the infinite rectangular pipe in Ex. 3.4, suppose the potential on!
the bottom (y = 0) and the two sides (x = ±b) is zero, but the potential on the top
(y = a) is a nonzero constant V0. Find the potential inside the pipe. [Note: This is a
rotated version of Prob. 3.15(b), but set it up as in Ex. 3.4, using sinusoidal functions
in y and hyperbolics in x . It is an unusual case in which k = 0 must be included.
Begin by finding the general solution to Eq. 3.26 when k = 0.]26

[
Answer: V0

(
y
a + 2

π

∑∞
n=1

(−1)n

n
cosh(nπx/a)

cosh(nπb/a)
sin(nπy/a)

)
. Alternatively, using sinu-

soidal functions of x and hyperbolics in y, − 2V0
b

∑∞
n=1

(−1)n sinh(αn y)

αn sinh(αn a)
cos(αn x), where

αn ≡ (2n − 1)π/2b
]

Problem 3.55!

(a) A long metal pipe of square cross-section (side a) is grounded on three sides,
while the fourth (which is insulated from the rest) is maintained at constant
potential V0. Find the net charge per unit length on the side opposite to V0.
[Hint: Use your answer to Prob. 3.15 or Prob. 3.54.]

(b) A long metal pipe of circular cross-section (radius R) is divided (lengthwise)
into four equal sections, three of them grounded and the fourth maintained at
constant potential V0. Find the net charge per unit length on the section opposite
to V0. [Answer to both (a) and (b): λ = −(ε0V0/π) ln 2]27

Problem 3.56 An ideal electric dipole is situated at the origin, and points in the z
direction, as in Fig. 3.36. An electric charge is released from rest at a point in the xy
plane. Show that it swings back and forth in a semi-circular arc, as though it were a
pendulum supported at the origin.28

Problem 3.57 A stationary electric dipole p = p ẑ is situated at the origin. A pos-
itive point charge q (mass m) executes circular motion (radius s) at constant speed
in the field of the dipole. Characterize the plane of the orbit. Find the speed, angular

momentum and total energy of the charge.29

[
Answer:L =

√
qpm/3

√
3πε0

]

Problem 3.58 Find the charge density σ(θ) on the surface of a sphere (radius R) that
produces the same electric field, for points exterior to the sphere, as a charge q at
the point a < R on the z axis.

[
Answer: q

4π R (R2 − a2)(R2 + a2 − 2Ra cos θ)−3/2
]

26For further discussion, see S. Hassani, Am. J. Phys. 59, 470 (1991).
27These are special cases of the Thompson-Lampard theorem; see J. D. Jackson, Am. J. Phys. 67,
107 (1999).
28This charming result is due to R. S. Jones, Am. J. Phys. 63, 1042 (1995).
29G. P. Sastry, V. Srinivas, and A. V. Madhav, Eur. J. Phys. 17, 275 (1996).
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4 Electric Fields in Matter

4.1 POLARIZATION

4.1.1 Dielectrics

In this chapter, we shall study electric fields in matter. Matter, of course, comes
in many varieties—solids, liquids, gases, metals, woods, glasses—and these sub-
stances do not all respond in the same way to electrostatic fields. Nevertheless,
most everyday objects belong (at least, in good approximation) to one of two large
classes: conductors and insulators (or dielectrics). We have already talked about
conductors; these are substances that contain an “unlimited” supply of charges
that are free to move about through the material. In practice, what this ordinarily
means is that many of the electrons (one or two per atom, in a typical metal) are
not associated with any particular nucleus, but roam around at will. In dielectrics,
by contrast, all charges are attached to specific atoms or molecules—they’re on
a tight leash, and all they can do is move a bit within the atom or molecule. Such
microscopic displacements are not as dramatic as the wholesale rearrangement
of charge in a conductor, but their cumulative effects account for the characteris-
tic behavior of dielectric materials. There are actually two principal mechanisms
by which electric fields can distort the charge distribution of a dielectric atom
or molecule: stretching and rotating. In the next two sections I’ll discuss these
processes.

4.1.2 Induced Dipoles

What happens to a neutral atom when it is placed in an electric field E? Your
first guess might well be: “Absolutely nothing—since the atom is not charged, the
field has no effect on it.” But that is incorrect. Although the atom as a whole is
electrically neutral, there is a positively charged core (the nucleus) and a nega-
tively charged electron cloud surrounding it. These two regions of charge within
the atom are influenced by the field: the nucleus is pushed in the direction of the
field, and the electrons the opposite way. In principle, if the field is large enough,
it can pull the atom apart completely, “ionizing” it (the substance then becomes
a conductor). With less extreme fields, however, an equilibrium is soon estab-
lished, for if the center of the electron cloud does not coincide with the nucleus,
these positive and negative charges attract one another, and that holds the atom
together. The two opposing forces—E pulling the electrons and nucleus apart,
their mutual attraction drawing them back together—reach a balance, leaving the
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H He Li Be C Ne Na Ar K Cs
0.667 0.205 24.3 5.60 1.67 0.396 24.1 1.64 43.4 59.4

TABLE 4.1 Atomic Polarizabilities (α/4πε0, in units of 10−30 m3). Data from: Hand-
book of Chemistry and Physics, 91st ed. (Boca Raton: CRC Press, 2010).

atom polarized, with plus charge shifted slightly one way, and minus the other.
The atom now has a tiny dipole moment p, which points in the same direction
as E. Typically, this induced dipole moment is approximately proportional to the
field (as long as the latter is not too strong):

p = αE. (4.1)
The constant of proportionality α is called atomic polarizability. Its value
depends on the detailed structure of the atom in question. Table 4.1 lists some
experimentally determined atomic polarizabilities.

Example 4.1. A primitive model for an atom consists of a point nucleus (+q)
surrounded by a uniformly charged spherical cloud (−q) of radius a (Fig. 4.1).
Calculate the atomic polarizability of such an atom.

−q

+q
a

FIGURE 4.1

−q

d

E

+q

FIGURE 4.2

Solution
In the presence of an external field E, the nucleus will be shifted slightly to the
right and the electron cloud to the left, as shown in Fig. 4.2. (Because the actual
displacements involved are extremely small, as you’ll see in Prob. 4.1, it is rea-
sonable to assume that the electron cloud retains its spherical shape.) Say that
equilibrium occurs when the nucleus is displaced a distance d from the center of
the sphere. At that point, the external field pushing the nucleus to the right exactly
balances the internal field pulling it to the left: E = Ee, where Ee is the field pro-
duced by the electron cloud. Now the field at a distance d from the center of a
uniformly charged sphere is

Ee = 1

4πε0

qd

a3

(Prob. 2.12). At equilibrium, then,

E = 1

4πε0

qd

a3
, or p = qd = (4πε0a3)E .
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The atomic polarizability is therefore

α = 4πε0a3 = 3ε0v, (4.2)

where v is the volume of the atom. Although this atomic model is extremely crude,
the result (Eq. 4.2) is not too bad—it’s accurate to within a factor of four or so for
many simple atoms.

For molecules the situation is not quite so simple, because frequently they
polarize more readily in some directions than in others. Carbon dioxide (Fig. 4.3),
for instance, has a polarizability of 4.5 × 10−40 C2·m/N when you apply the field
along the axis of the molecule, but only 2 × 10−40 for fields perpendicular to
this direction. When the field is at some angle to the axis, you must resolve it
into parallel and perpendicular components, and multiply each by the pertinent
polarizability:

p = α⊥E⊥ + α‖E‖.

In this case, the induced dipole moment may not even be in the same direction
as E. And CO2 is relatively simple, as molecules go, since the atoms at least
arrange themselves in a straight line; for a completely asymmetrical molecule,
Eq. 4.1 is replaced by the most general linear relation between E and p:

px = αxx Ex + αxy Ey + αxz Ez

py = αyx Ex + αyy Ey + αyz Ez

pz = αzx Ex + αzy Ey + αzz Ez

⎫⎪⎬
⎪⎭ (4.3)

O C O

FIGURE 4.3

The set of nine constants αi j constitute the polarizability tensor for the molecule.
Their values depend on the orientation of the axes you use, though it is always
possible to choose “principal” axes such that all the off-diagonal terms (αxy , αzx ,
etc.) vanish, leaving just three nonzero polarizabilities: αxx , αyy , and αzz .

Problem 4.1 A hydrogen atom (with the Bohr radius of half an angstrom) is situated
between two metal plates 1 mm apart, which are connected to opposite terminals of
a 500 V battery. What fraction of the atomic radius does the separation distance d
amount to, roughly? Estimate the voltage you would need with this apparatus to
ionize the atom. [Use the value of α in Table 4.1. Moral: The displacements we’re
talking about are minute, even on an atomic scale.]
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Problem 4.2 According to quantum mechanics, the electron cloud for a hydrogen
atom in the ground state has a charge density

ρ(r) = q

πa3
e−2r/a,

where q is the charge of the electron and a is the Bohr radius. Find the atomic
polarizability of such an atom. [Hint: First calculate the electric field of the electron
cloud, Ee(r); then expand the exponential, assuming r � a.1

Problem 4.3 According to Eq. 4.1, the induced dipole moment of an atom is pro-
portional to the external field. This is a “rule of thumb,” not a fundamental law,
and it is easy to concoct exceptions—in theory. Suppose, for example, the charge
density of the electron cloud were proportional to the distance from the center, out
to a radius R. To what power of E would p be proportional in that case? Find the
condition on ρ(r) such that Eq. 4.1 will hold in the weak-field limit.

Problem 4.4 A point charge q is situated a large distance r from a neutral atom of
polarizability α. Find the force of attraction between them.

4.1.3 Alignment of Polar Molecules

The neutral atom discussed in Sect. 4.1.2 had no dipole moment to start with—p
was induced by the applied field. Some molecules have built-in, permanent dipole
moments. In the water molecule, for example, the electrons tend to cluster around
the oxygen atom (Fig. 4.4), and since the molecule is bent at 105◦, this leaves a
negative charge at the vertex and a net positive charge on the opposite side. (The
dipole moment of water is unusually large: 6.1 × 10−30 C·m; in fact, this is what
accounts for its effectiveness as a solvent.) What happens when such molecules
(called polar molecules) are placed in an electric field?

If the field is uniform, the force on the positive end, F+ = qE, exactly cancels
the force on the negative end, F− = −qE (Fig. 4.5). However, there will be a
torque:

N = (r+ × F+) + (r− × F−)

= [
(d/2) × (qE)

] + [
(−d/2) × (−qE)

] = qd × E.

H+

P

O−

H+

105º

FIGURE 4.4

+q

−q

F+

E
F−

O d

FIGURE 4.5

1For a more sophisticated approach, see W. A. Bowers, Am. J. Phys. 54, 347 (1986).
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Thus a dipole p = qd in a uniform field E experiences a torque

N = p × E. (4.4)

Notice that N is in such a direction as to line p up parallel to E; a polar molecule
that is free to rotate will swing around until it points in the direction of the applied
field.

If the field is nonuniform, so that F+ does not exactly balance F−, there will be
a net force on the dipole, in addition to the torque. Of course, E must change rather
abruptly for there to be significant variation in the space of one molecule, so this
is not ordinarily a major consideration in discussing the behavior of dielectrics.
Nevertheless, the formula for the force on a dipole in a nonuniform field is of
some interest:

F = F+ + F− = q(E+ − E−) = q(�E),

where �E represents the difference between the field at the plus end and the field
at the minus end. Assuming the dipole is very short, we may use Eq. 1.35 to
approximate the small change in Ex :

�Ex ≡ (∇Ex ) · d,

with corresponding formulas for Ey and Ez . More compactly,

�E = (d · ∇)E,

and therefore2

F = (p · ∇)E. (4.5)

For a “perfect” dipole of infinitesimal length, Eq. 4.4 gives the torque about
the center of the dipole even in a nonuniform field; about any other point N =
(p × E) + (r × F).

Problem 4.5 In Fig. 4.6, p1 and p2 are (perfect) dipoles a distance r apart. What is
the torque on p1 due to p2? What is the torque on p2 due to p1? [In each case, I want
the torque on the dipole about its own center. If it bothers you that the answers are
not equal and opposite, see Prob. 4.29.]

p1 p2

r

FIGURE 4.6

p

z

θ

FIGURE 4.7

2In the present context, Eq. 4.5 could be written more conveniently as F = ∇(p · E). However, it is
safer to stick with (p · ∇)E, because we will be applying the formula to materials in which the dipole
moment (per unit volume) is itself a function of position and this second expression would imply
(incorrectly) that p too is to be differentiated.
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Problem 4.6 A (perfect) dipole p is situated a distance z above an infinite grounded
conducting plane (Fig. 4.7). The dipole makes an angle θ with the perpendicular to
the plane. Find the torque on p. If the dipole is free to rotate, in what orientation
will it come to rest?

Problem 4.7 Show that the energy of an ideal dipole p in an electric field E is
given by

U = −p · E. (4.6)

Problem 4.8 Show that the interaction energy of two dipoles separated by a dis-
placement r is

U = 1

4πε0

1

r 3
[p1 · p2 − 3(p1 · r̂)(p2 · r̂)]. (4.7)

[Hint: Use Prob. 4.7 and Eq. 3.104.]

Problem 4.9 A dipole p is a distance r from a point charge q, and oriented so that
p makes an angle θ with the vector r from q to p.

(a) What is the force on p?

(b) What is the force on q?

4.1.4 Polarization

In the previous two sections, we have considered the effect of an external elec-
tric field on an individual atom or molecule. We are now in a position to answer
(qualitatively) the original question: What happens to a piece of dielectric material
when it is placed in an electric field? If the substance consists of neutral atoms (or
nonpolar molecules), the field will induce in each a tiny dipole moment, pointing
in the same direction as the field.3 If the material is made up of polar molecules,
each permanent dipole will experience a torque, tending to line it up along the
field direction. (Random thermal motions compete with this process, so the align-
ment is never complete, especially at higher temperatures, and disappears almost
at once when the field is removed.)

Notice that these two mechanisms produce the same basic result: a lot of little
dipoles pointing along the direction of the field—the material becomes polarized.
A convenient measure of this effect is

P ≡ dipole moment per unit volume,

which is called the polarization. From now on we shall not worry much about
how the polarization got there. Actually, the two mechanisms I described are
not as clear-cut as I tried to pretend. Even in polar molecules there will be

3In asymmetric molecules, the induced dipole moment may not be parallel to the field, but if the
molecules are randomly oriented, the perpendicular contributions will average to zero. Within a single
crystal, the orientations are certainly not random, and we would have to treat this case separately.
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some polarization by displacement (though generally it is a lot easier to rotate a
molecule than to stretch it, so the second mechanism dominates). It’s even possi-
ble in some materials to “freeze in” polarization, so that it persists after the field
is removed. But let’s forget for a moment about the cause of the polarization, and
let’s study the field that a chunk of polarized material itself produces. Then, in
Sect. 4.3, we’ll put it all together: the original field, which was responsible for P,
plus the new field, which is due to P.

4.2 THE FIELD OF A POLARIZED OBJECT

4.2.1 Bound Charges

Suppose we have a piece of polarized material—that is, an object containing a
lot of microscopic dipoles lined up. The dipole moment per unit volume P is
given. Question: What is the field produced by this object (not the field that may
have caused the polarization, but the field the polarization itself causes)? Well,
we know what the field of an individual dipole looks like, so why not chop the
material up into infinitesimal dipoles and integrate to get the total? As usual, it’s
easier to work with the potential. For a single dipole p (Eq. 3.99),

V (r) = 1

4πε0

p · r̂
r2 , (4.8)

where r is the vector from the dipole to the point at which we are evaluating the
potential (Fig. 4.8). In the present context, we have a dipole moment p = P dτ ′ in
each volume element dτ ′, so the total potential is

V (r) = 1

4πε0

∫
V

P(r′) · r̂
r2 dτ ′. (4.9)

That does it, in principle. But a little sleight-of-hand casts this integral into a
much more illuminating form. Observing that

∇′
(

1

r

)
= r̂
r2 ,

p

r

FIGURE 4.8
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where (unlike Prob. 1.13) the differentiation is with respect to the source coordi-
nates (r′), we have

V = 1

4πε0

∫
V

P · ∇′
(

1

r

)
dτ ′.

Integrating by parts, using product rule number 5 (in the front cover), gives

V = 1

4πε0

⎡
⎣ ∫

V

∇′ ·
(

P
r

)
dτ ′ −

∫
V

1

r (∇
′ · P) dτ ′

⎤
⎦ ,

or, invoking the divergence theorem,

V = 1

4πε0

∮
S

1

r P · da′ − 1

4πε0

∫
V

1

r (∇
′ · P) dτ ′. (4.10)

The first term looks like the potential of a surface charge

σb ≡ P · n̂ (4.11)

(where n̂ is the normal unit vector), while the second term looks like the potential
of a volume charge

ρb ≡ −∇ · P. (4.12)

With these definitions, Eq. 4.10 becomes

V (r) = 1

4πε0

∮
S

σb

r da′ + 1

4πε0

∫
V

ρb

r dτ ′. (4.13)

What this means is that the potential (and hence also the field) of a polarized
object is the same as that produced by a volume charge density ρb = −∇ · P plus
a surface charge density σb = P · n̂. Instead of integrating the contributions of all
the infinitesimal dipoles, as in Eq. 4.9, we could first find those bound charges,
and then calculate the fields they produce, in the same way we calculate the field
of any other volume and surface charges (for example, using Gauss’s law).

Example 4.2. Find the electric field produced by a uniformly polarized sphere
of radius R.

Solution
We may as well choose the z axis to coincide with the direction of polarization
(Fig. 4.9). The volume bound charge density ρb is zero, since P is uniform, but

σb = P · n̂ = P cos θ,
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P
R

z

n
θ

FIGURE 4.9

where θ is the usual spherical coordinate. What we want, then, is the field pro-
duced by a charge density P cos θ plastered over the surface of a sphere. But we
already computed the potential of such a configuration, in Ex. 3.9:

V (r, θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P

3ε0
r cos θ, for r ≤ R,

P

3ε0

R3

r2
cos θ, for r ≥ R.

Since r cos θ = z, the field inside the sphere is uniform:

E = −∇V = − P

3ε0
ẑ = − 1

3ε0
P, for r < R. (4.14)

This remarkable result will be very useful in what follows. Outside the sphere the
potential is identical to that of a perfect dipole at the origin,

V = 1

4πε0

p · r̂
r2

, for r ≥ R, (4.15)

FIGURE 4.10
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whose dipole moment is, not surprisingly, equal to the total dipole moment of the
sphere:

p = 4

3
π R3P. (4.16)

The field of the uniformly polarized sphere is shown in Fig. 4.10.

Problem 4.10 A sphere of radius R carries a polarization

P(r) = kr,

where k is a constant and r is the vector from the center.

(a) Calculate the bound charges σb and ρb.

(b) Find the field inside and outside the sphere.

Problem 4.11 A short cylinder, of radius a and length L , carries a “frozen-in” uni-
form polarization P, parallel to its axis. Find the bound charge, and sketch the elec-
tric field (i) for L 
 a, (ii) for L � a, and (iii) for L ≈ a. [This is known as a bar
electret; it is the electrical analog to a bar magnet. In practice, only very special
materials—barium titanate is the most “familiar” example—will hold a permanent
electric polarization. That’s why you can’t buy electrets at the toy store.]

Problem 4.12 Calculate the potential of a uniformly polarized sphere (Ex. 4.2)
directly from Eq. 4.9.

4.2.2 Physical Interpretation of Bound Charges

In the last section we found that the field of a polarized object is identical to
the field that would be produced by a certain distribution of “bound charges,” σb

and ρb. But this conclusion emerged in the course of abstract manipulations on
the integral in Eq. 4.9, and left us with no clue as to the physical meaning of these
bound charges. Indeed, some authors give you the impression that bound charges
are in some sense “fictitious”—mere bookkeeping devices used to facilitate the
calculation of fields. Nothing could be further from the truth: ρb and σb repre-
sent perfectly genuine accumulations of charge. In this section I’ll explain how
polarization leads to these charge distributions.

The basic idea is very simple: Suppose we have a long string of dipoles, as
shown in Fig. 4.11. Along the line, the head of one effectively cancels the tail of
its neighbor, but at the ends there are two charges left over: plus at the right end
and minus at the left. It is as if we had peeled off an electron at one end and carried
it all the way down to the other end, though in fact no single electron made the
whole trip—a lot of tiny displacements add up to one large one. We call the net
charge at the ends a bound charge to remind ourselves that it cannot be removed;

− +− +− +− +− +− + − +=

FIGURE 4.11
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FIGURE 4.13

in a dielectric every electron is attached to a specific atom or molecule. But apart
from that, bound charge is no different from any other kind.

To calculate the actual amount of bound charge resulting from a given polar-
ization, examine a “tube” of dielectric parallel to P. The dipole moment of the
tiny chunk shown in Fig. 4.12 is P(Ad), where A is the cross-sectional area of
the tube and d is the length of the chunk. In terms of the charge (q) at the end,
this same dipole moment can be written qd. The bound charge that piles up at the
right end of the tube is therefore

q = P A.

If the ends have been sliced off perpendicularly, the surface charge density is

σb = q

A
= P.

For an oblique cut (Fig. 4.13), the charge is still the same, but A = Aend cos θ , so

σb = q

Aend
= P cos θ = P · n̂.

The effect of the polarization, then, is to paint a bound charge σb = P · n̂ over the
surface of the material. This is exactly what we found by more rigorous means in
Sect. 4.2.1. But now we know where the bound charge comes from.

If the polarization is nonuniform, we get accumulations of bound charge within
the material, as well as on the surface. A glance at Fig. 4.14 suggests that a diverg-
ing P results in a pileup of negative charge. Indeed, the net bound charge

∫
ρb dτ

+

+ +

+

+
+

+

+

−

−

−
− −

−

− −

FIGURE 4.14
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in a given volume is equal and opposite to the amount that has been pushed out
through the surface. The latter (by the same reasoning we used before) is P · n̂ per
unit area, so ∫

V

ρb dτ = −
∮
S

P · da = −
∫
V

(∇ · P) dτ.

Since this is true for any volume, we have

ρb = −∇ · P,

confirming, again, the more rigorous conclusion of Sect. 4.2.1.

Example 4.3. There is another way of analyzing the uniformly polarized sphere
(Ex. 4.2), which nicely illustrates the idea of a bound charge. What we have,
really, is two spheres of charge: a positive sphere and a negative sphere. With-
out polarization the two are superimposed and cancel completely. But when the
material is uniformly polarized, all the plus charges move slightly upward (the
z direction), and all the minus charges move slightly downward (Fig. 4.15). The
two spheres no longer overlap perfectly: at the top there’s a “cap” of leftover pos-
itive charge and at the bottom a cap of negative charge. This “leftover” charge is
precisely the bound surface charge σb.

+
+

−
−−−−−−−−−−−−−−−

−

++ ++ + ++ ++
+

d
+
−

FIGURE 4.15

In Prob. 2.18, you calculated the field in the region of overlap between two
uniformly charged spheres; the answer was

E = − 1

4πε0

qd
R3

,

where q is the total charge of the positive sphere, d is the vector from the negative
center to the positive center, and R is the radius of the sphere. We can express this
in terms of the polarization of the sphere, p = qd = ( 4

3π R3)P, as

E = − 1

3ε0
P.
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Meanwhile, for points outside, it is as though all the charge on each sphere were
concentrated at the respective center. We have, then, a dipole, with potential

V = 1

4πε0

p · r̂
r2

.

(Remember that d is some small fraction of an atomic radius; Fig. 4.15 is grossly
exaggerated.) These answers agree, of course, with the results of Ex. 4.2.

Problem 4.13 A very long cylinder, of radius a, carries a uniform polarization P
perpendicular to its axis. Find the electric field inside the cylinder. Show that the
field outside the cylinder can be expressed in the form

E(r) = a2

2ε0s2
[2(P · ŝ)ŝ − P].

[Careful: I said “uniform,” not “radial”!]

Problem 4.14 When you polarize a neutral dielectric, the charge moves a bit, but
the total remains zero. This fact should be reflected in the bound charges σb and ρb.
Prove from Eqs. 4.11 and 4.12 that the total bound charge vanishes.

4.2.3 The Field Inside a Dielectric4

I have been sloppy about the distinction between “pure” dipoles and “physical”
dipoles. In developing the theory of bound charges, I assumed we were working
with the pure kind—indeed, I started with Eq. 4.8, the formula for the potential
of a perfect dipole. And yet, an actual polarized dielectric consists of physical
dipoles, albeit extremely tiny ones. What is more, I presumed to represent dis-
crete molecular dipoles by a continuous density function P. How can I justify
this method? Outside the dielectric there is no real problem: here we are far away
from the molecules (r is many times greater than the separation distance between
plus and minus charges), so the dipole potential dominates overwhelmingly and
the detailed “graininess” of the source is blurred by distance. Inside the dielectric,
however, we can hardly pretend to be far from all the dipoles, and the procedure I
used in Sect. 4.2.1 is open to serious challenge.

In fact, when you stop to think about it, the electric field inside matter must
be fantastically complicated, on the microscopic level. If you happen to be very
near an electron, the field is gigantic, whereas a short distance away it may be
small or may point in a totally different direction. Moreover, an instant later, as
the atoms move about, the field will have altered entirely. This true microscopic
field would be utterly impossible to calculate, nor would it be of much interest
if you could. Just as, for macroscopic purposes, we regard water as a continu-
ous fluid, ignoring its molecular structure, so also we can ignore the microscopic

4This section can be skipped without loss of continuity.
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bumps and wrinkles in the electric field inside matter, and concentrate on the
macroscopic field. This is defined as the average field over regions large enough
to contain many thousands of atoms (so that the uninteresting microscopic fluc-
tuations are smoothed over), and yet small enough to ensure that we do not wash
out any significant large-scale variations in the field. (In practice, this means we
must average over regions much smaller than the dimensions of the object itself.)
Ordinarily, the macroscopic field is what people mean when they speak of “the”
field inside matter.5

It remains to show that the macroscopic field is what we actually obtain when
we use the methods of Sect. 4.2.1. The argument is subtle, so hang on. Sup-
pose I want to calculate the macroscopic field at some point r within a dielectric
(Fig. 4.16). I know I must average the true (microscopic) field over an appropriate
volume, so let me draw a small sphere about r, of radius, say, a thousand times
the size of a molecule. The macroscopic field at r, then, consists of two parts: the
average field over the sphere due to all charges outside, plus the average due to all
charges inside:

E = Eout + Ein.

You proved in Prob. 3.47(d) that the average field (over a sphere), produced by
charges outside, is equal to the field they produce at the center, so Eout is the field
at r due to the dipoles exterior to the sphere. These are far enough away that we
can safely use Eq. 4.9:

Vout = 1

4πε0

∫
outside

P(r′) · r̂
r2 dτ ′. (4.17)

The dipoles inside the sphere are too close to treat in this fashion. But fortunately
all we need is their average field, and that, according to Eq. 3.105, is

Ein = − 1

4πε0

p
R3

,

regardless of the details of the charge distribution within the sphere. The only
relevant quantity is the total dipole moment, p = ( 4

3π R3) P:

Ein = − 1

3ε0
P. (4.18)

r

R

FIGURE 4.16
5In case the notion of macroscopic fields sounds suspicious to you, let me point out that you do exactly
the same averaging whenever you speak of the density of a material.
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Now, by assumption, the sphere is small enough that P does not vary signif-
icantly over its volume, so the term left out of the integral in Eq. 4.17 corre-
sponds to the field at the center of a uniformly polarized sphere, to wit: −(1/3ε0)P
(Eq. 4.14). But this is precisely what Ein (Eq. 4.18) puts back in! The macroscopic
field, then, is given by the potential

V (r) = 1

4πε0

∫
P(r′) · r̂
r2 dτ ′, (4.19)

where the integral runs over the entire volume of the dielectric. This is, of course,
what we used in Sect. 4.2.1; without realizing it, we were correctly calculating
the averaged, macroscopic field, for points inside the dielectric.

You may have to reread the last couple of paragraphs for the argument to sink
in. Notice that it all revolves around the curious fact that the average field over
any sphere (due to the charge inside) is the same as the field at the center of a
uniformly polarized sphere with the same total dipole moment. This means that no
matter how crazy the actual microscopic charge configuration, we can replace it
by a nice smooth distribution of perfect dipoles, if all we want is the macroscopic
(average) field. Incidentally, while the argument ostensibly relies on the spherical
shape I chose to average over, the macroscopic field is certainly independent of
the geometry of the averaging region, and this is reflected in the final answer,
Eq. 4.19. Presumably one could reproduce the same argument for a cube or an
ellipsoid or whatever—the calculation might be more difficult, but the conclusion
would be the same.

4.3 THE ELECTRIC DISPLACEMENT

4.3.1 Gauss’s Law in the Presence of Dielectrics

In Sect. 4.2 we found that the effect of polarization is to produce accumulations of
(bound) charge, ρb = −∇ · P within the dielectric and σb = P · n̂ on the surface.
The field due to polarization of the medium is just the field of this bound charge.
We are now ready to put it all together: the field attributable to bound charge plus
the field due to everything else (which, for want of a better term, we call free
charge, ρ f ). The free charge might consist of electrons on a conductor or ions
embedded in the dielectric material or whatever; any charge, in other words, that
is not a result of polarization. Within the dielectric, the total charge density can
be written:

ρ = ρb + ρ f , (4.20)

and Gauss’s law reads

ε0∇ · E = ρ = ρb + ρ f = −∇ · P + ρ f ,

where E is now the total field, not just that portion generated by polarization.
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It is convenient to combine the two divergence terms:

∇ · (ε0E + P) = ρ f .

The expression in parentheses, designated by the letter D,

D ≡ ε0E + P, (4.21)

is known as the electric displacement. In terms of D, Gauss’s law reads

∇ · D = ρ f , (4.22)

or, in integral form,
∮

D · da = Q fenc , (4.23)

where Q fenc denotes the total free charge enclosed in the volume. This is a par-
ticularly useful way to express Gauss’s law, in the context of dielectrics, because
it makes reference only to free charges, and free charge is the stuff we control.
Bound charge comes along for the ride: when we put the free charge in place,
a certain polarization automatically ensues, by the mechanisms of Sect. 4.1, and
this polarization produces the bound charge. In a typical problem, therefore, we
know ρ f , but we do not (initially) know ρb; Eq. 4.23 lets us go right to work with
the information at hand. In particular, whenever the requisite symmetry is present,
we can immediately calculate D by the standard Gauss’s law methods.

Example 4.4. A long straight wire, carrying uniform line charge λ, is surrounded
by rubber insulation out to a radius a (Fig. 4.17). Find the electric displacement.

s

L

Gaussian surface

aλ

FIGURE 4.17

Solution
Drawing a cylindrical Gaussian surface, of radius s and length L , and applying
Eq. 4.23, we find

D(2πsL) = λL .
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Therefore,

D = λ

2πs
ŝ. (4.24)

Notice that this formula holds both within the insulation and outside it. In the
latter region, P = 0, so

E = 1

ε0
D = λ

2πε0s
ŝ, for s > a.

Inside the rubber, the electric field cannot be determined, since we do not know P.

It may appear to you that I left out the surface bound charge σb in deriving
Eq. 4.22, and in a sense that is true. We cannot apply Gauss’s law precisely at the
surface of a dielectric, for here ρb blows up,6 taking the divergence of E with it.
But everywhere else the logic is sound, and in fact if we picture the edge of the
dielectric as having some finite thickness, within which the polarization tapers
off to zero (probably a more realistic model than an abrupt cut-off anyway), then
there is no surface bound charge; ρb varies rapidly but smoothly within this “skin,”
and Gauss’s law can be safely applied everywhere. At any rate, the integral form
(Eq. 4.23) is free from this “defect.”

Problem 4.15 A thick spherical shell (inner radius a, outer radius b) is made of
dielectric material with a “frozen-in” polarization

P(r) = k

r
r̂,

where k is a constant and r is the distance from the center (Fig. 4.18). (There is
no free charge in the problem.) Find the electric field in all three regions by two
different methods:

a

bPP

P

P

FIGURE 4.18

(a) Sphere (b) Needle (c) Wafer

P

FIGURE 4.19

6The polarization drops abruptly to zero outside the material, so its derivative is a delta function (see
Prob. 1.46). The surface bound charge is precisely this term—in this sense it is actually included in
ρb , but we ordinarily prefer to handle it separately as σb .
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(a) Locate all the bound charge, and use Gauss’s law (Eq. 2.13) to calculate the
field it produces.

(b) Use Eq. 4.23 to find D, and then get E from Eq. 4.21. [Notice that the second
method is much faster, and it avoids any explicit reference to the bound charges.]

Problem 4.16 Suppose the field inside a large piece of dielectric is E0, so that the
electric displacement is D0 = ε0E0 + P.

(a) Now a small spherical cavity (Fig. 4.19a) is hollowed out of the material. Find
the field at the center of the cavity in terms of E0 and P. Also find the displace-
ment at the center of the cavity in terms of D0 and P. Assume the polarization
is “frozen in,” so it doesn’t change when the cavity is excavated.

(b) Do the same for a long needle-shaped cavity running parallel to P (Fig. 4.19b).

(c) Do the same for a thin wafer-shaped cavity perpendicular to P (Fig. 4.19c).

Assume the cavities are small enough that P, E0, and D0 are essentially uniform.
[Hint: Carving out a cavity is the same as superimposing an object of the same
shape but opposite polarization.]

4.3.2 A Deceptive Parallel

Equation 4.22 looks just like Gauss’s law, only the total charge density ρ is
replaced by the free charge density ρ f , and D is substituted for ε0E. For this
reason, you may be tempted to conclude that D is “just like” E (apart from the
factor ε0), except that its source is ρ f instead of ρ: “To solve problems involving
dielectrics, you just forget all about the bound charge—calculate the field as you
ordinarily would, only call the answer D instead of E.” This reasoning is seduc-
tive, but the conclusion is false; in particular, there is no “Coulomb’s law” for D:

D(r) �= 1

4π

∫ r̂
r2 ρ f (r′) dτ ′.

The parallel between E and D is more subtle than that.
For the divergence alone is insufficient to determine a vector field; you need to

know the curl as well. One tends to forget this in the case of electrostatic fields
because the curl of E is always zero. But the curl of D is not always zero.

∇ × D = ε0(∇ × E) + (∇ × P) = ∇ × P, (4.25)

and there is no reason, in general, to suppose that the curl of P vanishes. Some-
times it does, as in Ex. 4.4 and Prob. 4.15, but more often it does not. The
bar electret of Prob. 4.11 is a case in point: here there is no free charge any-
where, so if you really believe that the only source of D is ρ f , you will be
forced to conclude that D = 0 everywhere, and hence that E = (−1/ε0)P inside
and E = 0 outside the electret, which is obviously wrong. (I leave it for you to
find the place where ∇ × P �= 0 in this problem.) Because ∇ × D �= 0, more-
over, D cannot be expressed as the gradient of a scalar—there is no “potential”
for D.
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Advice: When you are asked to compute the electric displacement, first look for
symmetry. If the problem exhibits spherical, cylindrical, or plane symmetry, then
you can get D directly from Eq. 4.23 by the usual Gauss’s law methods. (Evidently
in such cases ∇ × P is automatically zero, but since symmetry alone dictates the
answer, you’re not really obliged to worry about the curl.) If the requisite sym-
metry is absent, you’ll have to think of another approach, and, in particular, you
must not assume that D is determined exclusively by the free charge.

4.3.3 Boundary Conditions

The electrostatic boundary conditions of Sect. 2.3.5 can be recast in terms of D.
Equation 4.23 tells us the discontinuity in the component perpendicular to an
interface:

D⊥
above − D⊥

below = σ f , (4.26)

while Eq. 4.25 gives the discontinuity in parallel components:

D‖
above − D‖

below = P‖
above − P‖

below. (4.27)

In the presence of dielectrics, these are sometimes more useful than the corre-
sponding boundary conditions on E (Eqs. 2.31 and 2.32):

E⊥
above − E⊥

below = 1

ε0
σ, (4.28)

and

E‖
above − E‖

below = 0. (4.29)

You might try applying them, for example, to Probs. 4.16 and 4.17.

Problem 4.17 For the bar electret of Prob. 4.11, make three careful sketches: one
of P, one of E, and one of D. Assume L is about 2a. [Hint: E lines terminate on
charges; D lines terminate on free charges.]

4.4 LINEAR DIELECTRICS

4.4.1 Susceptibility, Permittivity, Dielectric Constant

In Sects. 4.2 and 4.3 we did not commit ourselves as to the cause of P; we dealt
only with the effects of polarization. From the qualitative discussion of Sect. 4.1,
though, we know that the polarization of a dielectric ordinarily results from an
electric field, which lines up the atomic or molecular dipoles. For many sub-
stances, in fact, the polarization is proportional to the field, provided E is not
too strong:

P = ε0χeE. (4.30)
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The constant of proportionality, χe, is called the electric susceptibility of the
medium (a factor of ε0 has been extracted to make χe dimensionless). The value of
χe depends on the microscopic structure of the substance in question (and also on
external conditions such as temperature). I shall call materials that obey Eq. 4.30
linear dielectrics.7

Note that E in Eq. 4.30 is the total field; it may be due in part to free charges
and in part to the polarization itself. If, for instance, we put a piece of dielectric
into an external field E0, we cannot compute P directly from Eq. 4.30; the external
field will polarize the material, and this polarization will produce its own field,
which then contributes to the total field, and this in turn modifies the polarization,
which . . . Breaking out of this infinite regress is not always easy. You’ll see some
examples in a moment. The simplest approach is to begin with the displacement,
at least in those cases where D can be deduced directly from the free charge
distribution.

In linear media we have

D = ε0E + P = ε0E + ε0χeE = ε0(1 + χe)E, (4.31)

so D is also proportional to E:

D = εE, (4.32)

where

ε ≡ ε0(1 + χe). (4.33)

This new constant ε is called the permittivity of the material. (In vacuum, where
there is no matter to polarize, the susceptibility is zero, and the permittivity is ε0.
That’s why ε0 is called the permittivity of free space. I dislike the term, for it
suggests that the vacuum is just a special kind of linear dielectric, in which the
permittivity happens to have the value 8.85 × 10−12 C 2/N·m2.) If you remove a
factor of ε0, the remaining dimensionless quantity

εr ≡ 1 + χe = ε

ε0
(4.34)

is called the relative permittivity, or dielectric constant, of the material. Dielec-
tric constants for some common substances are listed in Table 4.2. (Notice that εr

is greater than 1, for all ordinary materials.) Of course, the permittivity and the
dielectric constant do not convey any information that was not already available
in the susceptibility, nor is there anything essentially new in Eq. 4.32; the physics
of linear dielectrics is all contained in Eq. 4.30.8

7In modern optical applications, especially, nonlinear materials have become increasingly important.
For these there is a second term in the formula for P as a function of E—typically a cubic term. In gen-
eral, Eq. 4.30 can be regarded as the first (nonzero) term in the Taylor expansion of P in powers of E.
8As long as we are engaged in this orgy of unnecessary terminology and notation, I might as well
mention that formulas for D in terms of E (Eq. 4.32, in the case of linear dielectrics) are called
constitutive relations.
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Dielectric Dielectric
Material Constant Material Constant
Vacuum 1 Benzene 2.28
Helium 1.000065 Diamond 5.7-5.9
Neon 1.00013 Salt 5.9
Hydrogen (H2) 1.000254 Silicon 11.7
Argon 1.000517 Methanol 33.0
Air (dry) 1.000536 Water 80.1
Nitrogen (N2) 1.000548 Ice (-30◦ C) 104
Water vapor (100◦ C) 1.00589 KTaNbO3 (0◦ C) 34,000

TABLE 4.2 Dielectric Constants (unless otherwise specified, values given are for 1 atm,
20◦ C). Data from Handbook of Chemistry and Physics, 91st ed. (Boca Raton: CRC Press,
2010).

Example 4.5. A metal sphere of radius a carries a charge Q (Fig. 4.20). It is
surrounded, out to radius b, by linear dielectric material of permittivity ε. Find
the potential at the center (relative to infinity).

Solution
To compute V , we need to know E; to find E, we might first try to locate the
bound charge; we could get the bound charge from P, but we can’t calculate P
unless we already know E (Eq. 4.30). We seem to be in a bind. What we do know
is the free charge Q, and fortunately the arrangement is spherically symmetric, so
let’s begin by calculating D, using Eq. 4.23:

D = Q

4πr2
r̂, for all points r > a.

(Inside the metal sphere, of course, E = P = D = 0.) Once we know D, it is a
trivial matter to obtain E, using Eq. 4.32:

E =

⎧⎪⎪⎨
⎪⎪⎩

Q

4πεr2
r̂, for a < r < b,

Q

4πε0r2
r̂, for r > b.

a

b

Q

FIGURE 4.20
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The potential at the center is therefore

V = −
∫ 0

∞
E · dl = −

∫ b

∞

(
Q

4πε0r2

)
dr −

∫ a

b

(
Q

4πεr2

)
dr −

∫ 0

a
(0) dr

= Q

4π

(
1

ε0b
+ 1

εa
− 1

εb

)
.

As it turns out, it was not necessary for us to compute the polarization or the
bound charge explicitly, though this can easily be done:

P = ε0χeE = ε0χe Q

4πεr2
r̂,

in the dielectric, and hence

ρb = −∇ · P = 0,

while

σb = P · n̂ =

⎧⎪⎪⎨
⎪⎪⎩

ε0χe Q

4πεb2
, at the outer surface,

−ε0χe Q

4πεa2
, at the inner surface.

Notice that the surface bound charge at a is negative (n̂ points outward with
respect to the dielectric, which is +r̂ at b but −r̂ at a). This is natural, since
the charge on the metal sphere attracts its opposite in all the dielectric molecules.
It is this layer of negative charge that reduces the field, within the dielectric, from
1/4πε0(Q/r2)r̂ to 1/4πε(Q/r2)r̂. In this respect, a dielectric is rather like an
imperfect conductor: on a conducting shell the induced surface charge would be
such as to cancel the field of Q completely in the region a < r < b; the dielectric
does the best it can, but the cancellation is only partial.

You might suppose that linear dielectrics escape the defect in the parallel
between E and D. Since P and D are now proportional to E, does it not fol-
low that their curls, like E’s, must vanish? Unfortunately, it does not, for the line
integral of P around a closed path that straddles the boundary between one type of
material and another need not be zero, even though the integral of E around the
same loop must be. The reason is that the proportionality factor ε0χe is different
on the two sides. For instance, at the interface between a polarized dielectric and
the vacuum (Fig. 4.21), P is zero on one side but not on the other. Around this

Vacuum
Dielectric

P = 0

P ≠ 0

FIGURE 4.21
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loop
∮

P · dl �= 0, and hence, by Stokes’ theorem, the curl of P cannot vanish
everywhere within the loop (in fact, it is infinite at the boundary).9

Of course, if the space is entirely filled with a homogeneous10 linear dielectric,
then this objection is void; in this rather special circumstance

∇ · D = ρ f and ∇ × D = 0,

so D can be found from the free charge just as though the dielectric were not there:

D = ε0Evac,

where Evac is the field the same free charge distribution would produce in the
absence of any dielectric. According to Eqs. 4.32 and 4.34, therefore,

E = 1

ε
D = 1

εr
Evac. (4.35)

Conclusion: When all space is filled with a homogeneous linear dielectric, the
field everywhere is simply reduced by a factor of one over the dielectric constant.
(Actually, it is not necessary for the dielectric to fill all space: in regions where
the field is zero anyway, it can hardly matter whether the dielectric is present or
not, since there’s no polarization in any event.)

For example, if a free charge q is embedded in a large dielectric, the field it
produces is

E = 1

4πε

q

r2
r̂ (4.36)

(that’s ε, not ε0), and the force it exerts on nearby charges is reduced accord-
ingly. But it’s not that there is anything wrong with Coulomb’s law; rather, the
polarization of the medium partially “shields” the charge, by surrounding it with
bound charge of the opposite sign (Fig. 4.22).11

+
+ +

+

+ +

+
+

−

−

−
− −

−
− −
q

FIGURE 4.22

9Putting that argument in differential form, Eq. 4.30 and product rule 7 yield ∇ × P = −ε0E × (∇χe),
so the problem arises when ∇χe is not parallel to E.
10A homogeneous medium is one whose properties (in this case the susceptibility) do not vary with
position.
11In quantum electrodynamics, the vacuum itself can be polarized, and this means that the effective
(or “renormalized”) charge of the electron, as you might measure it in the laboratory, is not its true
(“bare”) value, and in fact depends slightly on how far away you are!
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Example 4.6. A parallel-plate capacitor (Fig. 4.23) is filled with insulating
material of dielectric constant εr . What effect does this have on its capacitance?

Solution
Since the field is confined to the space between the plates, the dielectric will
reduce E, and hence also the potential difference V , by a factor 1/εr . Accordingly,
the capacitance C = Q/V is increased by a factor of the dielectric constant,

C = εr Cvac. (4.37)

This is, in fact, a common way to beef up a capacitor.

Dielectric

FIGURE 4.23

A crystal is generally easier to polarize in some directions than in others,12 and
in this case Eq. 4.30 is replaced by the general linear relation

Px = ε0(χexx Ex + χexy Ey + χexz Ez)

Py = ε0(χeyx Ex + χeyy Ey + χeyz Ez)

Pz = ε0(χezx Ex + χezy Ey + χezz Ez)

⎫⎪⎪⎬
⎪⎪⎭

, (4.38)

just as Eq. 4.1 was superseded by Eq. 4.3 for asymmetrical molecules. The nine
coefficients, χexx , χexy , . . . , constitute the susceptibility tensor.

Problem 4.18 The space between the plates of a parallel-plate capacitor (Fig. 4.24)
is filled with two slabs of linear dielectric material. Each slab has thickness a, so
the total distance between the plates is 2a. Slab 1 has a dielectric constant of 2, and
slab 2 has a dielectric constant of 1.5. The free charge density on the top plate is σ

and on the bottom plate −σ .

12A medium is said to be isotropic if its properties (such as susceptibility) are the same in all
directions. Thus Eq. 4.30 is the special case of Eq. 4.38 that holds for isotropic media. Physicists tend
to be sloppy with their language, and unless otherwise indicated the term “linear dielectric” implies
“isotropic linear dielectric,” and suggests “homogeneous isotropic linear dielectric.” But technically,
“linear” just means that at any given point, and for E in a given direction, the components of P are
proportional to E—the proportionality factor could vary with position and/or direction.



4.4 Linear Dielectrics 191

Slab 1

a

a

−σ

+σ

Slab 2

FIGURE 4.24

(a) Find the electric displacement D in each slab.

(b) Find the electric field E in each slab.

(c) Find the polarization P in each slab.

(d) Find the potential difference between the plates.

(e) Find the location and amount of all bound charge.

(f) Now that you know all the charge (free and bound), recalculate the field in each
slab, and confirm your answer to (b).

Problem 4.19 Suppose you have enough linear dielectric material, of dielectric
constant εr , to half-fill a parallel-plate capacitor (Fig. 4.25). By what fraction is
the capacitance increased when you distribute the material as in Fig. 4.25(a)? How
about Fig. 4.25(b)? For a given potential difference V between the plates, find E,
D, and P, in each region, and the free and bound charge on all surfaces, for both
cases.

Problem 4.20 A sphere of linear dielectric material has embedded in it a uniform
free charge density ρ. Find the potential at the center of the sphere (relative to
infinity), if its radius is R and the dielectric constant is εr .

(a) (b)

FIGURE 4.25
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Problem 4.21 A certain coaxial cable consists of a copper wire, radius a, sur-
rounded by a concentric copper tube of inner radius c (Fig. 4.26). The space between
is partially filled (from b out to c) with material of dielectric constant εr , as shown.
Find the capacitance per unit length of this cable.

a
b

c

FIGURE 4.26

4.4.2 Boundary Value Problems with Linear Dielectrics

In a (homogeneous isotropic) linear dielectric, the bound charge density (ρb) is
proportional to the free charge density (ρ f ):13

ρb = −∇ · P = −∇ ·
(
ε0

χe

ε
D

)
= −

(
χe

1 + χe

)
ρ f . (4.39)

In particular, unless free charge is actually embedded in the material, ρ = 0, and
any net charge must reside at the surface. Within such a dielectric, then, the
potential obeys Laplace’s equation, and all the machinery of Chapter 3 carries
over. It is convenient, however, to rewrite the boundary conditions in a way that
makes reference only to the free charge. Equation 4.26 says

εabove E⊥
above − εbelow E⊥

below = σ f , (4.40)

or (in terms of the potential),

εabove
∂Vabove

∂n
− εbelow

∂Vbelow

∂n
= −σ f , (4.41)

whereas the potential itself is, of course, continuous (Eq. 2.34):

Vabove = Vbelow. (4.42)

13This does not apply to the surface charge (σb), because χe is not independent of position (obviously)
at the boundary.
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Example 4.7. A sphere of homogeneous linear dielectric material is placed in
an otherwise uniform electric field E0 (Fig. 4.27). Find the electric field inside the
sphere.

E0

E

FIGURE 4.27

Solution
This is reminiscent of Ex. 3.8, in which an uncharged conducting sphere was
introduced into a uniform field. In that case, the field of the induced charge
canceled E0 within the sphere; in a dielectric, the cancellation (from the bound
charge) is incomplete.

Our problem is to solve Laplace’s equation, for Vin(r, θ) when r ≤ R, and
Vout(r, θ) when r ≥ R, subject to the boundary conditions

(i) Vin = Vout, at r = R,

(ii) ε
∂Vin

∂r
= ε0

∂Vout

∂r
, at r = R,

(iii) Vout → −E0r cos θ, for r 
 R.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.43)

(The second of these follows from Eq. 4.41, since there is no free charge at the
surface.) Inside the sphere, Eq. 3.65 says

Vin(r, θ) =
∞∑

l=0

Al rl Pl(cos θ); (4.44)

outside the sphere, in view of (iii), we have

Vout(r, θ) = −E0r cos θ +
∞∑

l=0

Bl

rl+1
Pl(cos θ). (4.45)

Boundary condition (i) requires that

∞∑
l=0

Al Rl Pl(cos θ) = −E0 R cos θ +
∞∑

l=0

Bl

Rl+1
Pl(cos θ),
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so14

Al Rl = Bl

Rl+1
, for l �= 1,

A1 R =−E0 R + B1

R2
.

⎫⎪⎬
⎪⎭ (4.46)

Meanwhile, condition (ii) yields

εr

∞∑
l=0

l Al Rl−1 Pl(cos θ) = −E0 cos θ −
∞∑

l=0

(l + 1)Bl

Rl+2
Pl(cos θ),

so

εr l Al Rl−1 = − (l + 1)Bl

Rl+2
, for l �= 1,

εr A1 = −E0 − 2B1

R3
.

⎫⎪⎪⎬
⎪⎪⎭

(4.47)

It follows that

Al = Bl = 0, for l �= 1,

A1 = − 3
εr + 2 E0 B1 = εr − 1

εr + 2 R3 E0.

⎫⎪⎬
⎪⎭ (4.48)

Evidently

Vin(r, θ) = − 3E0

εr + 2
r cos θ = − 3E0

εr + 2
z,

and hence the field inside the sphere is (surprisingly) uniform:

E = 3

εr + 2
E0. (4.49)

Example 4.8. Suppose the entire region below the plane z = 0 in Fig. 4.28 is
filled with uniform linear dielectric material of susceptibility χe. Calculate the
force on a point charge q situated a distance d above the origin.

14Remember, P1(cos θ) = cos θ , and the coefficients must be equal for each l, as you could prove by
multiplying by Pl ′ (cos θ) sin θ , integrating from 0 to π , and invoking the orthogonality of the Legendre
polynomials (Eq. 3.68).
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x

y

z

d

q

θ

r

FIGURE 4.28

Solution
The surface bound charge on the xy plane is of opposite sign to q, so the force
will be attractive. (In view of Eq. 4.39, there is no volume bound charge.) Let us
first calculate σb, using Eqs. 4.11 and 4.30.15

σb = P · n̂ = Pz = ε0χe Ez,

where Ez is the z-component of the total field just inside the dielectric, at z = 0.
This field is due in part to q and in part to the bound charge itself. From Coulomb’s
law, the former contribution is

− 1

4πε0

q

(r2 + d2)
cos θ = − 1

4πε0

qd

(r2 + d2)3/2
,

where r = √
x2 + y2 is the distance from the origin. The z component of the field

of the bound charge, meanwhile, is −σb/2ε0 (see footnote after Eq. 2.33). Thus

σb = ε0χe

[
− 1

4πε0

qd

(r2 + d2)3/2
− σb

2ε0

]
,

which we can solve for σb:

σb = − 1

2π

(
χe

χe + 2

)
qd

(r2 + d2)3/2
. (4.50)

Apart from the factor χe/(χe + 2), this is exactly the same as the induced charge
on an infinite conducting plane under similar circumstances (Eq. 3.10).16 Evi-
dently the total bound charge is

qb = −
(

χe

χe + 2

)
q. (4.51)

15This method mimics Prob. 3.38.
16For some purposes a conductor can be regarded as the limiting case of a linear dielectric, with
χe → ∞. This is often a useful check—try applying it to Exs. 4.5, 4.6, and 4.7.
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We could, of course, obtain the field of σb by direct integration

E = 1

4πε0

∫ ( r̂
r2

)
σb da.

But, as in the case of the conducting plane, there is a nicer solution by the method
of images. Indeed, if we replace the dielectric by a single point charge qb at the
image position (0, 0,−d), we have

V = 1

4πε0

[
q√

x2 + y2 + (z − d)2
+ qb√

x2 + y2 + (z + d)2

]
, (4.52)

in the region z > 0. Meanwhile, a charge (q + qb) at (0, 0, d) yields the potential

V = 1

4πε0

[
q + qb√

x2 + y2 + (z − d)2

]
, (4.53)

for the region z < 0. Taken together, Eqs. 4.52 and 4.53 constitute a function that
satisfies Poisson’s equation with a point charge q at (0, 0, d), which goes to zero at
infinity, which is continuous at the boundary z = 0, and whose normal derivative
exhibits the discontinuity appropriate to a surface charge σb at z = 0:

−ε0

(
∂V

∂z

∣∣∣∣
z=0+

− ∂V

∂z

∣∣∣∣
z=0−

)
= − 1

2π

(
χe

χe + 2

)
qd

(x2 + y2 + d2)3/2
.

Accordingly, this is the correct potential for our problem. In particular, the force
on q is:

F = 1

4πε0

qqb

(2d)2
ẑ = − 1

4πε0

(
χe

χe + 2

)
q2

4d2
ẑ. (4.54)

I do not claim to have provided a compelling motivation for Eqs. 4.52 and
4.53—like all image solutions, this one owes its justification to the fact that it
works: it solves Poisson’s equation, and it meets the boundary conditions. Still,
discovering an image solution is not entirely a matter of guesswork. There are at
least two “rules of the game”: (1) You must never put an image charge into the
region where you’re computing the potential. (Thus Eq. 4.52 gives the potential
for z > 0, but this image charge qb is at z = −d; when we turn to the region z < 0
(Eq. 4.53), the image charge (q + qb) is at z = +d.) (2) The image charges must
add up to the correct total in each region. (That’s how I knew to use qb to account
for the charge in the region z ≤ 0, and (q + qb) to cover the region z ≥ 0.)

Problem 4.22 A very long cylinder of linear dielectric material is placed in an
otherwise uniform electric field E0. Find the resulting field within the cylinder. (The
radius is a, the susceptibility χe, and the axis is perpendicular to E0.)
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Problem 4.23 Find the field inside a sphere of linear dielectric material in an oth-
erwise uniform electric field E0 (Ex. 4.7) by the following method of successive
approximations: First pretend the field inside is just E0, and use Eq. 4.30 to write
down the resulting polarization P0. This polarization generates a field of its own,
E1 (Ex. 4.2), which in turn modifies the polarization by an amount P1, which fur-
ther changes the field by an amount E2, and so on. The resulting field is E0 + E1+
E2 + · · · . Sum the series, and compare your answer with Eq. 4.49.

Problem 4.24 An uncharged conducting sphere of radius a is coated with a thick
insulating shell (dielectric constant εr ) out to radius b. This object is now placed in
an otherwise uniform electric field E0. Find the electric field in the insulator.

Problem 4.25 Suppose the region above the xy plane in Ex. 4.8 is also filled with!
linear dielectric but of a different susceptibility χ ′

e. Find the potential everywhere.

4.4.3 Energy in Dielectric Systems

It takes work to charge up a capacitor (Eq. 2.55):

W = 1
2 CV 2.

If the capacitor is filled with linear dielectric, its capacitance exceeds the vacuum
value by a factor of the dielectric constant,

C = εr Cvac,

as we found in Ex. 4.6. Evidently the work necessary to charge a dielectric-filled
capacitor is increased by the same factor. The reason is pretty clear: you have to
pump on more (free) charge, to achieve a given potential, because part of the field
is canceled off by the bound charges.

In Chapter 2, I derived a general formula for the energy stored in any electro-
static system (Eq. 2.45):

W = ε0

2

∫
E2 dτ. (4.55)

The case of the dielectric-filled capacitor suggests that this should be changed to

W = ε0

2

∫
εr E2 dτ = 1

2

∫
D · E dτ,

in the presence of linear dielectrics. To prove it, suppose the dielectric material
is fixed in position, and we bring in the free charge, a bit at a time. As ρ f is
increased by an amount �ρ f , the polarization will change and with it the bound
charge distribution; but we’re interested only in the work done on the incremental
free charge:

�W =
∫

(�ρ f )V dτ. (4.56)
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Since ∇ · D = ρ f , �ρ f = ∇ · (�D), where �D is the resulting change in D, so

�W =
∫

[∇ · (�D)]V dτ.

Now

∇ · [(�D)V ] = [∇ · (�D)]V + �D · (∇V ),

and hence (integrating by parts):

�W =
∫

∇ · [(�D)V ] dτ +
∫

(�D) · E dτ.

The divergence theorem turns the first term into a surface integral, which vanishes
if we integrate over all space. Therefore, the work done is equal to

�W =
∫

(�D) · E dτ. (4.57)

So far, this applies to any material. Now, if the medium is a linear dielectric,
then D = εE, so

1
2�(D · E) = 1

2�(εE2) = ε(�E) · E = (�D) · E

(for infinitesimal increments). Thus

�W = �

(
1

2

∫
D · E dτ

)
.

The total work done, then, as we build the free charge up from zero to the final
configuration, is

W = 1

2

∫
D · E dτ, (4.58)

as anticipated.17

It may puzzle you that Eq. 4.55, which we derived quite generally in Chap-
ter 2, does not seem to apply in the presence of dielectrics, where it is replaced
by Eq. 4.58. The point is not that one or the other of these equations is wrong,
but rather that they address somewhat different questions. The distinction is sub-
tle, so let’s go right back to the beginning: What do we mean by “the energy
of a system”? Answer: It is the work required to assemble the system. Very

17In case you are wondering why I did not do this more simply by the method of Sect. 2.4.3, starting
with W = 1

2

∫
ρ f V dτ , the reason is that this formula is untrue, in general. Study the derivation of

Eq. 2.42, and you will see that it applies only to the total charge. For linear dielectrics it happens to
hold for the free charge alone, but this is scarcely obvious a priori and, in fact, is most easily confirmed
by working backward from Eq. 4.58.



4.4 Linear Dielectrics 199

well—but when dielectrics are involved, there are two quite different ways one
might construe this process:

1. We bring in all the charges (free and bound), one by one, with tweezers, and
glue each one down in its proper final location. If this is what you mean by
“assemble the system,” then Eq. 4.55 is your formula for the energy stored.
Notice, however, that this will not include the work involved in stretching
and twisting the dielectric molecules (if we picture the positive and nega-
tive charges as held together by tiny springs, it does not include the spring
energy, 1

2 kx2, associated with polarizing each molecule).18

2. With the unpolarized dielectric in place, we bring in the free charges, one by
one, allowing the dielectric to respond as it sees fit. If this is what you mean
by “assemble the system” (and ordinarily it is, since free charge is what we
actually push around), then Eq. 4.58 is the formula you want. In this case
the “spring” energy is included, albeit indirectly, because the force you must
apply to the free charge depends on the disposition of the bound charge; as
you move the free charge, you are automatically stretching those “springs.”

Example 4.9. A sphere of radius R is filled with material of dielectric constant εr

and uniform embedded free charge ρ f . What is the energy of this configuration?

Solution
From Gauss’s law (in the form of Eq. 4.23), the displacement is

D(r) =

⎧⎪⎪⎨
⎪⎪⎩

ρ f

3
r (r < R),

ρ f

3

R3

r2
r̂ (r > R).

So the electric field is

E(r) =

⎧⎪⎪⎨
⎪⎪⎩

ρ f

3ε0εr
r (r < R),

ρ f

3ε0

R3

r2
r̂ (r > R).

The purely electrostatic energy (Eq. 4.55) is

W1 = ε0

2

[(
ρ f

3ε0εr

)2 ∫ R

0
r2 4πr2 dr +

(
ρ f

3ε0

)2

R6
∫ ∞

R

1

r4
4πr2 dr

]

= 2π

9ε0
ρ2

f R5

(
1

5ε2
r

+ 1

)
.

18The “spring” itself may be electrical in nature, but it is still not included in Eq. 4.55, if E is taken to
be the macroscopic field.
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But the total energy (Eq. 4.58) is

W2 = 1

2

[(ρ f

3

)(
ρ f

3ε0εr

)∫ R

0
r2 4πr2 dr +

(
ρ f R3

3

)(
ρ f R3

3ε0

) ∫ ∞

R

1

r4
4πr2 dr

]

= 2π

9ε0
ρ2

f R5

(
1

5εr
+ 1

)
.

Notice that W1 < W2—that’s because W1 does not include the energy involved in
stretching the molecules.

Let’s check that W2 is the work done on the free charge in assembling the
system. We start with the (uncharged, unpolarized) dielectric sphere, and bring in
the free charge in infinitesimal installments (dq), filling out the sphere layer by
layer. When we have reached radius r ′, the electric field is

E(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ f

3ε0εr
r (r < r ′),

ρ f

3ε0εr

r ′3

r2
r̂ (r ′ < r < R),

ρ f

3ε0

r ′3

r2
r̂ (r > R).

The work required to bring the next dq in from infinity to r ′ is

dW = −dq

[∫ R

∞
E · dl +

∫ r ′

R
E · dl

]

= −dq

[
ρ f r ′3

3ε0

∫ R

∞
1

r2
dr + ρ f r ′3

3ε0εr

∫ r ′

R

1

r2
dr

]

= ρ f r ′3

3ε0

[
1

R
+ 1

εr

(
1

r ′ − 1

R

)]
dq.

This increases the radius (r ′):

dq = ρ f 4πr ′2 dr ′,

so the total work done, in going from r ′ = 0 to r ′ = R, is

W = 4πρ2
f

3ε0

[
1

R

(
1 − 1

εr

)∫ R

0
r ′5 dr ′ + 1

εr

∫ R

0
r ′4 dr ′

]

= 2π

9ε0
ρ2

f R5

(
1

5εr
+ 1

)
= W2. �

Evidently the energy “stored in the springs” is

Wspring = W2 − W1 = 2π

45ε0ε2
r

ρ2
f R5 (εr − 1) .



4.4 Linear Dielectrics 201

I would like to confirm this in an explicit model. Picture the dielectric as a col-
lection of tiny proto-dipoles, each consisting of +q and −q attached to a spring
of constant k and equilibrium length 0, so in the absence of any field the positive
and negative ends coincide. One end of each dipole is nailed in position (like the
nuclei in a solid), but the other end is free to move in response to any imposed
field. Let dτ be the volume assigned to each proto-dipole (the dipole itself may
occupy only a small portion of this space).

With the field turned on, the electric force on the free end is balanced by the
spring force;19 the charges separate by a distance d: q E = kd. In our case

E = ρ f

3ε0εr
r.

The resulting dipole moment is p = qd, and the polarization is P = p/dτ , so

k = ρ f

3ε0εr d2
Pr dτ.

The energy of this particular spring is

dWspring = 1

2
kd2 = ρ f

6ε0εr
Pr dτ,

and hence the total is

Wspring = ρ f

6ε0εr

∫
Pr dτ.

Now

P = ε0χeE = ε0χe
ρ f

3ε0εr
r = (εr − 1)ρ f

3εr
r,

so

Wspring = ρ f

6ε0εr

(εr − 1)ρ f

3εr
4π

∫ R

0
r4 dr = 2π

45ε0ε2
r

ρ2
f R5 (εr − 1) ,

and it works out perfectly.

It is sometimes alleged that Eq. 4.58 represents the energy even for nonlinear
dielectrics, but this is false: To proceed beyond Eq. 4.57, one must assume lin-
earity. In fact, for dissipative systems the whole notion of “stored energy” loses
its meaning, because the work done depends not only on the final configuration
but on how it got there. If the molecular “springs” are allowed to have some

19Note that the “spring” here is a surrogate for whatever holds the molecule together—it includes the
electrical attraction of the other end. If it bothers you that the force is taken to be proportional to the
separation, look again at Example 4.1.
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friction, for instance, then Wspring can be made as large as you like, by assem-
bling the charges in such a way that the spring is obliged to expand and con-
tract many times before reaching its final state. In particular, you get nonsensical
results if you try to apply Eq. 4.58 to electrets, with frozen-in polarization (see
Prob. 4.27).

Problem 4.26 A spherical conductor, of radius a, carries a charge Q (Fig. 4.29). It
is surrounded by linear dielectric material of susceptibility χe, out to radius b. Find
the energy of this configuration (Eq. 4.58).

Q
a

b

FIGURE 4.29

Problem 4.27 Calculate W , using both Eq. 4.55 and Eq. 4.58, for a sphere of radius
R with frozen-in uniform polarization P (Ex. 4.2). Comment on the discrepancy.
Which (if either) is the “true” energy of the system?

4.4.4 Forces on Dielectrics

Just as a conductor is attracted into an electric field (Eq. 2.51), so too is a
dielectric—and for essentially the same reason: the bound charge tends to accu-
mulate near the free charge of the opposite sign. But the calculation of forces on
dielectrics can be surprisingly tricky. Consider, for example, the case of a slab of
linear dielectric material, partially inserted between the plates of a parallel-plate
capacitor (Fig. 4.30). We have always pretended that the field is uniform inside a
parallel-plate capacitor, and zero outside. If this were literally true, there would
be no net force on the dielectric at all, since the field everywhere would be per-
pendicular to the plates. However, there is in reality a fringing field around the
edges, which for most purposes can be ignored but in this case is responsible for
the whole effect. (Indeed, the field could not terminate abruptly at the edge of
the capacitor, for if it did, the line integral of E around the closed loop shown in
Fig. 4.31 would not be zero.) It is this nonuniform fringing field that pulls the
dielectric into the capacitor.

Fringing fields are notoriously difficult to calculate; luckily, we can avoid this
altogether, by the following ingenious method.20 Let W be the energy of the

20For a direct calculation from the fringing fields, see E. R. Dietz, Am. J. Phys. 72, 1499 (2004).
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Dielectric
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FIGURE 4.30
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Fringing region

.

FIGURE 4.31

system—it depends, of course, on the amount of overlap. If I pull the dielectric
out an infinitesimal distance dx, the energy is changed by an amount equal to the
work done:

dW = Fme dx, (4.59)

where Fme is the force I must exert, to counteract the electrical force F on the
dielectric: Fme = −F . Thus the electrical force on the slab is

F = −dW

dx
. (4.60)

Now, the energy stored in the capacitor is

W = 1
2 CV 2, (4.61)

and the capacitance in this case is

C = ε0w

d
(εr l − χex), (4.62)

where l is the length of the plates (Fig. 4.30). Let’s assume that the total charge
on the plates (Q = CV ) is held constant, as the dielectric moves. In terms of Q,

W = 1

2

Q2

C
, (4.63)
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so

F = −dW

dx
= 1

2

Q2

C2

dC

dx
= 1

2
V 2 dC

dx
. (4.64)

But
dC

dx
= −ε0χew

d
,

and hence

F = −ε0χew

2d
V 2. (4.65)

(The minus sign indicates that the force is in the negative x direction; the dielectric
is pulled into the capacitor.)

It is a common error to use Eq. 4.61 (with V constant), rather than Eq. 4.63
(with Q constant), in computing the force. One then obtains

F = −1

2
V 2 dC

dx
,

which is off by a sign. It is, of course, possible to maintain the capacitor at a fixed
potential, by connecting it up to a battery. But in that case the battery also does
work as the dielectric moves; instead of Eq. 4.59, we now have

dW = Fme dx + V d Q, (4.66)

where V d Q is the work done by the battery. It follows that

F = −dW

dx
+ V

d Q

dx
= −1

2
V 2 dC

dx
+ V 2 dC

dx
= 1

2
V 2 dC

dx
, (4.67)

the same as before (Eq. 4.64), with the correct sign.
Please understand: The force on the dielectric cannot possibly depend on

whether you plan to hold Q constant or V constant—it is determined entirely
by the distribution of charge, free and bound. It’s simpler to calculate the force
assuming constant Q, because then you don’t have to worry about work done by
the battery; but if you insist, it can be done correctly either way.

Notice that we were able to determine the force without knowing anything
about the fringing fields that are ultimately responsible for it! Of course, it’s built
into the whole structure of electrostatics that ∇ × E = 0, and hence that the fring-
ing fields must be present; we’re not really getting something for nothing here—
just cleverly exploiting the internal consistency of the theory. The energy stored
in the fringing fields themselves (which was not accounted for in this derivation)
stays constant, as the slab moves; what does change is the energy well inside the
capacitor, where the field is nice and uniform.

Problem 4.28 Two long coaxial cylindrical metal tubes (inner radius a, outer radius
b) stand vertically in a tank of dielectric oil (susceptibility χe, mass density ρ). The
inner one is maintained at potential V , and the outer one is grounded (Fig. 4.32). To
what height (h) does the oil rise, in the space between the tubes?
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Oil

h

a
b

FIGURE 4.32

More Problems on Chapter 4

Problem 4.29

(a) For the configuration in Prob. 4.5, calculate the force on p2 due to p1, and the
force on p1 due to p2. Are the answers consistent with Newton’s third law?

(b) Find the total torque on p2 with respect to the center of p1, and compare it with
the torque on p1 about that same point. [Hint: combine your answer to (a) with
the result of Prob. 4.5.]

Problem 4.30 An electric dipole p, pointing in the y direction, is placed midway
between two large conducting plates, as shown in Fig. 4.33. Each plate makes a

+V

x

y

−V

pθ
θ

FIGURE 4.33
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small angle θ with respect to the x axis, and they are maintained at potentials ±V .
What is the direction of the net force on p? (There’s nothing to calculate, here, but
do explain your answer qualitatively.)

Problem 4.31 A point charge Q is “nailed down” on a table. Around it, at radius R,
is a frictionless circular track on which a dipole p rides, constrained always to point
tangent to the circle. Use Eq. 4.5 to show that the electric force on the dipole is

F = Q

4πε0

p
R3

.

Notice that this force is always in the “forward” direction (you can easily confirm
this by drawing a diagram showing the forces on the two ends of the dipole). Why
isn’t this a perpetual motion machine?21

Problem 4.32 Earnshaw’s theorem (Prob. 3.2) says that you cannot trap a charged!
particle in an electrostatic field. Question: Could you trap a neutral (but polarizable)
atom in an electrostatic field?

(a) Show that the force on the atom is F = 1
2 α∇(E2).

(b) The question becomes, therefore: Is it possible for E2 to have a local maximum
(in a charge-free region)? In that case the force would push the atom back to its
equilibrium position. Show that the answer is no. [Hint: Use Prob. 3.4(a).]22

Problem 4.33 A dielectric cube of side a, centered at the origin, carries a “frozen-
in” polarization P = kr, where k is a constant. Find all the bound charges, and check
that they add up to zero.

Problem 4.34 The space between the plates of a parallel-plate capacitor is filled
with dielectric material whose dielectric constant varies linearly from 1 at the
bottom plate (x = 0) to 2 at the top plate (x = d). The capacitor is connected
to a battery of voltage V . Find all the bound charge, and check that the total
is zero.

Problem 4.35 A point charge q is imbedded at the center of a sphere of linear
dielectric material (with susceptibility χe and radius R). Find the electric field, the
polarization, and the bound charge densities, ρb and σb. What is the total bound
charge on the surface? Where is the compensating negative bound charge located?

Problem 4.36 At the interface between one linear dielectric and another, the electric
field lines bend (see Fig. 4.34). Show that

tan θ2/ tan θ1 = ε2/ε1, (4.68)

assuming there is no free charge at the boundary. [Comment: Eq. 4.68 is reminiscent
of Snell’s law in optics. Would a convex “lens” of dielectric material tend to “focus,”
or “defocus,” the electric field?]

21This charming paradox was suggested by K. Brownstein.
22Interestingly, it can be done with oscillating fields. See K. T. McDonald, Am. J. Phys. 68, 486
(2000).
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FIGURE 4.34

Problem 4.37 A point dipole p is imbedded at the center of a sphere of linear!
dielectric material (with radius R and dielectric constant εr ). Find the electric po-
tential inside and outside the sphere.

[
Answer:

p cos θ

4πεr 2

(
1 + 2

r 3

R3

(εr − 1)

(εr + 2)

)
, (r ≤ R); p cos θ

4πε0r 2

(
3

εr + 2

)
, (r ≥ R)

]

Problem 4.38 Prove the following uniqueness theorem: A volume V contains a
specified free charge distribution, and various pieces of linear dielectric material,
with the susceptibility of each one given. If the potential is specified on the bound-
aries S of V (V = 0 at infinity would be suitable) then the potential throughout V
is uniquely determined. [Hint: Integrate ∇ · (V3D3) over V .]

V0

R

FIGURE 4.35

Problem 4.39 A conducting sphere at potential V0 is half embedded in linear
dielectric material of susceptibility χe, which occupies the region z < 0 (Fig. 4.35).
Claim: the potential everywhere is exactly the same as it would have been in the
absence of the dielectric! Check this claim, as follows:

(a) Write down the formula for the proposed potential V (r), in terms of V0, R,
and r . Use it to determine the field, the polarization, the bound charge, and the
free charge distribution on the sphere.

(b) Show that the resulting charge configuration would indeed produce the potential
V (r).

(c) Appeal to the uniqueness theorem in Prob. 4.38 to complete the argument.

(d) Could you solve the configurations in Fig. 4.36 with the same potential? If not,
explain why.
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V0 V0

(a) (b)

FIGURE 4.36

Problem 4.40 According to Eq. 4.5, the force on a single dipole is (p · ∇)E, so the
net force on a dielectric object is

F =
∫

(P · ∇)Eext dτ. (4.69)

[Here Eext is the field of everything except the dielectric. You might assume that it
wouldn’t matter if you used the total field; after all, the dielectric can’t exert a force
on itself. However, because the field of the dielectric is discontinuous at the location
of any bound surface charge, the derivative introduces a spurious delta function, and
it is safest to stick with Eext.] Use Eq. 4.69 to determine the force on a tiny sphere,
of radius R, composed of linear dielectric material of susceptibility χe, which is
situated a distance s from a fine wire carrying a uniform line charge λ.

Problem 4.41 In a linear dielectric, the polarization is proportional to the field:!
P = ε0χeE. If the material consists of atoms (or nonpolar molecules), the induced
dipole moment of each one is likewise proportional to the field p = αE. Question:
What is the relation between the atomic polarizability α and the susceptibility χe?

Since P (the dipole moment per unit volume) is p (the dipole moment per atom)
times N (the number of atoms per unit volume), P = Np = NαE, one’s first incli-
nation is to say that

χe = Nα

ε0
. (4.70)

And in fact this is not far off, if the density is low. But closer inspection reveals
a subtle problem, for the field E in Eq. 4.30 is the total macroscopic field in the
medium, whereas the field in Eq. 4.1 is due to everything except the particular atom
under consideration (polarizability was defined for an isolated atom subject to a
specified external field); call this field Eelse. Imagine that the space allotted to each
atom is a sphere of radius R, and show that

E =
(

1 − Nα

3ε0

)
Eelse. (4.71)

Use this to conclude that

χe = Nα/ε0

1 − Nα/3ε0
,

or

α = 3ε0

N

(
εr − 1

εr + 2

)
. (4.72)
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Equation 4.72 is known as the Clausius-Mossotti formula, or, in its application to
optics, the Lorentz-Lorenz equation.

Problem 4.42 Check the Clausius-Mossotti relation (Eq. 4.72) for the gases listed
in Table 4.1. (Dielectric constants are given in Table 4.2.) (The densities here are
so small that Eqs. 4.70 and 4.72 are indistinguishable. For experimental data that
confirm the Clausius-Mossotti correction term see, for instance, the first edition of
Purcell’s Electricity and Magnetism, Problem 9.28.)23

Problem 4.43 The Clausius-Mossotti equation (Prob. 4.41) tells you how to cal-!
culate the susceptibility of a nonpolar substance, in terms of the atomic polariz-
ability α. The Langevin equation tells you how to calculate the susceptibility of a
polar substance, in terms of the permanent molecular dipole moment p. Here’s how
it goes:

(a) The energy of a dipole in an external field E is u = −p · E = −pE cos θ

(Eq. 4.6), where θ is the usual polar angle, if we orient the z axis along E.
Statistical mechanics says that for a material in equilibrium at absolute temper-
ature T , the probability of a given molecule having energy u is proportional to
the Boltzmann factor,

exp(−u/kT ).

The average energy of the dipoles is therefore

<u> =

∫
ue−(u/kT ) d∫
e−(u/kT ) d

,

where d = sin θ dθ dφ, and the integration is over all orientations (θ :
0 → π; φ : 0 → 2π ). Use this to show that the polarization of a substance
containing N molecules per unit volume is

P = N p[coth(pE/kT ) − (kT/pE)]. (4.73)

That’s the Langevin formula. Sketch P/N p as a function of pE/kT .

(b) Notice that for large fields/low temperatures, virtually all the molecules are
lined up, and the material is nonlinear. Ordinarily, however, kT is much greater
than pE . Show that in this régime the material is linear, and calculate its suscep-
tibility, in terms of N , p, T , and k. Compute the susceptibility of water at 20◦C,
and compare the experimental value in Table 4.2. (The dipole moment of water
is 6.1 × 10−30 C·m.) This is rather far off, because we have again neglected the
distinction between E and Eelse. The agreement is better in low-density gases,
for which the difference between E and Eelse is negligible. Try it for water vapor
at 100◦C and 1 atm.

23E. M. Purcell, Electricity and Magnetism (Berkeley Physics Course, Vol. 2), (New York: McGraw-
Hill, 1963).
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5 Magnetostatics

5.1 THE LORENTZ FORCE LAW

5.1.1 Magnetic Fields

Remember the basic problem of classical electrodynamics: We have a collection
of charges q1, q2, q3, . . . (the “source” charges), and we want to calculate the force
they exert on some other charge Q (the “test” charge). (See Fig. 5.1.) According
to the principle of superposition, it is sufficient to find the force of a single source
charge—the total is then the vector sum of all the individual forces. Up to now,
we have confined our attention to the simplest case, electrostatics, in which the
source charge is at rest (though the test charge need not be). The time has come
to consider the forces between charges in motion.

To give you some sense of what is in store, imagine that I set up the following
demonstration: Two wires hang from the ceiling, a few centimeters apart; when
I turn on a current, so that it passes up one wire and back down the other, the
wires jump apart—they evidently repel one another (Fig. 5.2(a)). How do we
explain this? You might suppose that the battery (or whatever drives the current)
is actually charging up the wire, and that the force is simply due to the electrical
repulsion of like charges. But this is incorrect. I could hold up a test charge near
these wires, and there would be no force on it,1 for the wires are in fact electrically
neutral. (It’s true that electrons are flowing down the line—that’s what a current
is—but there are just as many stationary plus charges as moving minus charges
on any given segment.) Moreover, if I hook up my demonstration so as to make
the current flow up both wires (Fig. 5.2(b)), they are found to attract!

q1

q2
q3

Source charges Test charge

Q

FIGURE 5.1

1This is not precisely true, as we shall see in Prob. 7.43.

210
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Battery Battery

(a) Currents in opposite
     directions repel.

(b) Currents in same
      directions attract.

+ − + −

FIGURE 5.2

Whatever force accounts for the attraction of parallel currents and the repulsion
of antiparallel ones is not electrostatic in nature. It is our first encounter with a
magnetic force. Whereas a stationary charge produces only an electric field E in
the space around it, a moving charge generates, in addition, a magnetic field B.
In fact, magnetic fields are a lot easier to detect, in practice—all you need is a
Boy Scout compass. How these devices work is irrelevant at the moment; it is
enough to know that the needle points in the direction of the local magnetic field.
Ordinarily, this means north, in response to the earth’s magnetic field, but in the
laboratory, where typical fields may be hundreds of times stronger than that, the
compass indicates the direction of whatever magnetic field is present.

Current

Magnetic field

FIGURE 5.3
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v
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FIGURE 5.4
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Now, if you hold up a tiny compass in the vicinity of a current-carrying wire,
you quickly discover a very peculiar thing: The field does not point toward the
wire, nor away from it, but rather it circles around the wire. In fact, if you grab
the wire with your right hand—thumb in the direction of the current—your fingers
curl around in the direction of the magnetic field (Fig. 5.3). How can such a field
lead to a force of attraction on a nearby parallel current? At the second wire, the
magnetic field points into the page (Fig. 5.4), the current is upward, and yet the
resulting force is to the left! It’s going to take a strange law to account for these
directions.

5.1.2 Magnetic Forces

In fact, this combination of directions is just right for a cross product: the magnetic
force on a charge Q, moving with velocity v in a magnetic field B, is2

Fmag = Q(v × B). (5.1)

This is known as the Lorentz force law.3 In the presence of both electric and
magnetic fields, the net force on Q would be

F = Q[E + (v × B)]. (5.2)

I do not pretend to have derived Eq. 5.1, of course; it is a fundamental axiom
of the theory, whose justification is to be found in experiments such as the one I
described in Sect. 5.1.1.

Our main job from now on is to calculate the magnetic field B (and for that
matter the electric field E as well; the rules are more complicated when the source
charges are in motion). But before we proceed, it is worthwhile to take a closer
look at the Lorentz force law itself; it is a peculiar law, and it leads to some truly
bizarre particle trajectories.

Example 5.1. Cyclotron motion. The archtypical motion of a charged particle
in a magnetic field is circular, with the magnetic force providing the centripetal
acceleration. In Fig. 5.5, a uniform magnetic field points into the page; if the
charge Q moves counterclockwise, with speed v, around a circle of radius R,
the magnetic force points inward, and has a fixed magnitude QvB—just right to
sustain uniform circular motion:

QvB = m
v2

R
, or p = Q B R, (5.3)

2Since F and v are vectors, B is actually a pseudovector.
3Actually, it is due to Oliver Heaviside.
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where m is the particle’s mass and p = mv is its momentum. Equation 5.3 is
known as the cyclotron formula because it describes the motion of a particle in a
cyclotron—the first of the modern particle accelerators. It also suggests a simple
experimental technique for finding the momentum of a charged particle: send it
through a region of known magnetic field, and measure the radius of its trajectory.
This is in fact the standard means for determining the momenta of elementary
particles.

I assumed that the charge moves in a plane perpendicular to B. If it starts out
with some additional speed v‖ parallel to B, this component of the motion is
unaffected by the magnetic field, and the particle moves in a helix (Fig. 5.6). The
radius is still given by Eq. 5.3, but the velocity in question is now the component
perpendicular to B, v⊥.

Example 5.2. Cycloid Motion. A more exotic trajectory occurs if we include
a uniform electric field, at right angles to the magnetic one. Suppose, for instance,
that B points in the x-direction, and E in the z-direction, as shown in Fig. 5.7.
A positive charge is released from the origin; what path will it follow?

Solution
Let’s think it through qualitatively, first. Initially, the particle is at rest, so the mag-
netic force is zero, and the electric field accelerates the charge in the z-direction.
As it picks up speed, a magnetic force develops which, according to Eq. 5.1, pulls
the charge around to the right. The faster it goes, the stronger Fmag becomes;
eventually, it curves the particle back around towards the y axis. At this point the
charge is moving against the electrical force, so it begins to slow down—the mag-
netic force then decreases, and the electrical force takes over, bringing the particle
to rest at point a, in Fig. 5.7. There the entire process commences anew, carrying
the particle over to point b, and so on.

Now let’s do it quantitatively. There being no force in the x-direction, the posi-
tion of the particle at any time t can be described by the vector (0, y(t), z(t)); the
velocity is therefore
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v = (0, ẏ, ż),

where dots indicate time derivatives. Thus

v × B =
∣∣∣∣∣∣

x̂ ŷ ẑ
0 ẏ ż
B 0 0

∣∣∣∣∣∣ = Bż ŷ − B ẏ ẑ,

and hence, applying Newton’s second law,

F = Q(E + v × B) = Q(E ẑ + Bż ŷ − B ẏ ẑ) = ma = m(ÿ ŷ + z̈ ẑ).

Or, treating the ŷ and ẑ components separately,

Q Bż = mÿ, QE − Q B ẏ = mz̈.

For convenience, let

ω ≡ Q B

m
. (5.4)

(This is the cyclotron frequency, at which the particle would revolve in the ab-
sence of any electric field.) Then the equations of motion take the form

ÿ = ωż, z̈ = ω

(
E

B
− ẏ

)
. (5.5)

Their general solution4 is

y(t) = C1 cos ωt + C2 sin ωt + (E/B)t + C3,

z(t) = C2 cos ωt − C1 sin ωt + C4.

}
(5.6)

4As coupled differential equations, they are easily solved by differentiating the first and using the
second to eliminate z̈.
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But the particle started from rest (ẏ(0) = ż(0) = 0), at the origin (y(0) = z(0) =
0); these four conditions determine the constants C1, C2, C3, and C4:

y(t) = E

ωB
(ωt − sin ωt), z(t) = E

ωB
(1 − cos ωt). (5.7)

In this form, the answer is not terribly enlightening, but if we let

R ≡ E

ωB
, (5.8)

and eliminate the sines and cosines by exploiting the trigonometric identity
sin2 ωt + cos2 ωt = 1, we find that

(y − Rωt)2 + (z − R)2 = R2. (5.9)

This is the formula for a circle, of radius R, whose center (0, Rωt, R) travels in
the y-direction at a constant speed

u = ωR = E

B
. (5.10)

The particle moves as though it were a spot on the rim of a wheel rolling along the
y axis. The curve generated in this way is called a cycloid. Notice that the overall
motion is not in the direction of E, as you might suppose, but perpendicular to it.

One implication of the Lorentz force law (Eq. 5.1) deserves special attention:

Magnetic forces do no work.

For if Q moves an amount dl = v dt, the work done is

dWmag = Fmag · dl = Q(v × B) · v dt = 0. (5.11)

This follows because (v × B) is perpendicular to v, so (v × B) · v = 0. Magnetic
forces may alter the direction in which a particle moves, but they cannot speed
it up or slow it down. The fact that magnetic forces do no work is an elementary
and direct consequence of the Lorentz force law, but there are many situations
in which it appears so manifestly false that one’s confidence is bound to waver.
When a magnetic crane lifts the carcass of a junked car, for instance, something
is obviously doing work, and it seems perverse to deny that the magnetic force
is responsible. Well, perverse or not, deny it we must, and it can be a very subtle
matter to figure out who does deserve the credit in such circumstances. We’ll see
a cute example in the next section, but the full story will have to await Chapter 8.

Problem 5.1 A particle of charge q enters a region of uniform magnetic field B
(pointing into the page). The field deflects the particle a distance d above the original
line of flight, as shown in Fig. 5.8. Is the charge positive or negative? In terms of a,
d , B and q , find the momentum of the particle.
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Problem 5.2 Find and sketch the trajectory of the particle in Ex. 5.2, if it starts at
the origin with velocity

(a) v(0) = (E/B)ŷ,

(b) v(0) = (E/2B)ŷ,

(c) v(0) = (E/B)(ŷ + ẑ).

Problem 5.3 In 1897, J. J. Thomson “discovered” the electron by measuring the
charge-to-mass ratio of “cathode rays” (actually, streams of electrons, with charge
q and mass m) as follows:

(a) First he passed the beam through uniform crossed electric and magnetic fields
E and B (mutually perpendicular, and both of them perpendicular to the beam),
and adjusted the electric field until he got zero deflection. What, then, was the
speed of the particles (in terms of E and B)?

(b) Then he turned off the electric field, and measured the radius of curvature, R,
of the beam, as deflected by the magnetic field alone. In terms of E , B, and R,
what is the charge-to-mass ratio (q/m) of the particles?

5.1.3 Currents

The current in a wire is the charge per unit time passing a given point. By def-
inition, negative charges moving to the left count the same as positive ones to
the right. This conveniently reflects the physical fact that almost all phenomena
involving moving charges depend on the product of charge and velocity—if you
reverse the signs of q and v, you get the same answer, so it doesn’t really mat-
ter which you have. (The Lorentz force law is a case in point; the Hall effect
(Prob. 5.41) is a notorious exception.) In practice, it is ordinarily the negatively
charged electrons that do the moving—in the direction opposite to the electric
current. To avoid the petty complications this entails, I shall often pretend it’s the
positive charges that move, as in fact everyone assumed they did for a century
or so after Benjamin Franklin established his unfortunate convention.5 Current is
measured in coulombs-per-second, or amperes (A):

1 A = 1 C/s. (5.12)

5If we called the electron plus and the proton minus, the problem would never arise. In the context of
Franklin’s experiments with cat’s fur and glass rods, the choice was completely arbitrary.
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A line charge λ traveling down a wire at speed v (Fig. 5.9) constitutes a current

I = λv, (5.13)

because a segment of length v�t , carrying charge λv�t , passes point P in a time
interval �t . Current is actually a vector:

I = λv. (5.14)

Because the path of the flow is dictated by the shape of the wire, one doesn’t
ordinarily bother to display the direction of I explicitly,6 but when it comes to
surface and volume currents we cannot afford to be so casual, and for the sake of
notational consistency it is a good idea to acknowledge the vectorial character of
currents right from the start. A neutral wire, of course, contains as many stationary
positive charges as mobile negative ones. The former do not contribute to the
current—the charge density λ in Eq. 5.13 refers only to the moving charges. In
the unusual situation where both types move, I = λ+v+ + λ−v−.

The magnetic force on a segment of current-carrying wire is

Fmag =
∫

(v × B) dq =
∫

(v × B)λ dl =
∫

(I × B) dl. (5.15)

Inasmuch as I and dl both point in the same direction, we can just as well write
this as

Fmag =
∫

I (dl × B). (5.16)

Typically, the current is constant (in magnitude) along the wire, and in that case I
comes outside the integral:

Fmag = I
∫

(dl × B). (5.17)

Example 5.3. A rectangular loop of wire, supporting a mass m, hangs vertically
with one end in a uniform magnetic field B, which points into the page in the
shaded region of Fig. 5.10. For what current I, in the loop, would the magnetic
force upward exactly balance the gravitational force downward?

6For the same reason, if you are describing a locomotive constrained to move along a specified track,
you would probably speak of its speed, rather than its velocity.
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Solution
First of all, the current must circulate clockwise, in order for (I × B) in the hori-
zontal segment to point upward. The force is

Fmag = I Ba,

where a is the width of the loop. (The magnetic forces on the two vertical seg-
ments cancel.) For Fmag to balance the weight (mg), we must therefore have

I = mg

Ba
. (5.18)

The weight just hangs there, suspended in mid-air!
What happens if we now increase the current? Then the upward magnetic force

exceeds the downward force of gravity, and the loop rises, lifting the weight.
Somebody’s doing work, and it sure looks as though the magnetic force is re-
sponsible. Indeed, one is tempted to write

Wmag = Fmagh = I Bah, (5.19)

where h is the distance the loop rises. But we know that magnetic forces never do
work. What’s going on here?

Well, when the loop starts to rise, the charges in the wire are no longer moving
horizontally—their velocity now acquires an upward component u, the speed of
the loop (Fig. 5.11), in addition to the horizontal component w associated with
the current (I = λw). The magnetic force, which is always perpendicular to the
velocity, no longer points straight up, but tilts back. It is perpendicular to the net
displacement of the charge (which is in the direction of v), and therefore it does
no work on q. It does have a vertical component (qwB); indeed, the net vertical
force on all the charge (λa) in the upper segment of the loop is

Fvert = λawB = I Ba (5.20)

(as before); but now it also has a horizontal component (qu B), which opposes
the flow of current. Whoever is in charge of maintaining that current, therefore,
must now push those charges along, against the backward component of the mag-
netic force.
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The total horizontal force on the top segment is

Fhoriz = λau B. (5.21)

In a time dt , the charges move a (horizontal) distance w dt , so the work done by
this agency (presumably a battery or a generator) is

Wbattery = λaB
∫

uw dt = I Bah,

which is precisely what we naïvely attributed to the magnetic force in Eq. 5.19.
Was work done in this process? Absolutely! Who did it? The battery! What, then,
was the role of the magnetic force? Well, it redirected the horizontal force of the
battery into the vertical motion of the loop and the weight.7

N
Fmop

FIGURE 5.12

It may help to consider a mechanical analogy. Imagine you’re sliding a trunk
up a frictionless ramp, by pushing on it horizontally with a mop (Fig. 5.12). The
normal force (N) does no work, because it is perpendicular to the displacement.
But it does have a vertical component (which in fact is what lifts the trunk), and
a (backward) horizontal component (which you have to overcome by pushing on
the mop). Who is doing the work here? You are, obviously—and yet your force
(which is purely horizontal) is not (at least, not directly) what lifts the box. The

7If you like, the vertical component of Fmag does work lifting the car, but the horizontal component
does equal negative work opposing the current. However you look at it, the net work done by the
magnetic force is zero.
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normal force plays the same passive (but crucial) role as the magnetic force in
Ex. 5.3: while doing no work itself, it redirects the efforts of the active agent
(you, or the battery, as the case may be), from horizontal to vertical.

When charge flows over a surface, we describe it by the surface current den-
sity, K, defined as follows: Consider a “ribbon” of infinitesimal width dl⊥, run-
ning parallel to the flow (Fig. 5.13). If the current in this ribbon is dI, the surface
current density is

K ≡ dI
dl⊥

. (5.22)

In words, K is the current per unit width. In particular, if the (mobile) surface
charge density is σ and its velocity is v, then

K = σv. (5.23)

In general, K will vary from point to point over the surface, reflecting variations
in σ and/or v. The magnetic force on the surface current is

Fmag =
∫

(v × B)σ da =
∫

(K × B) da. (5.24)

Caveat: Just as E suffers a discontinuity at a surface charge, so B is discontinuous
at a surface current. In Eq. 5.24, you must be careful to use the average field, just
as we did in Sect. 2.5.3.

When the flow of charge is distributed throughout a three-dimensional region,
we describe it by the volume current density, J, defined as follows: Consider a
“tube” of infinitesimal cross section da⊥, running parallel to the flow (Fig. 5.14).
If the current in this tube is dI, the volume current density is

J ≡ dI
da⊥

. (5.25)

In words, J is the current per unit area. If the (mobile) volume charge density is
ρ and the velocity is v, then

J = ρv. (5.26)

dl⊥

Flow

K

FIGURE 5.13
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The magnetic force on a volume current is therefore

Fmag =
∫

(v × B)ρ dτ =
∫

(J × B) dτ. (5.27)

Example 5.4.

(a) A current I is uniformly distributed over a wire of circular cross section, with
radius a (Fig. 5.15). Find the volume current density J .

Solution
The area (perpendicular to the flow) is πa2, so

J = I

πa2
.

This was trivial because the current density was uniform.

(b) Suppose the current density in the wire is proportional to the distance from the
axis,

J = ks

(for some constant k). Find the total current in the wire.

a
I

FIGURE 5.15

ds

sdφ

FIGURE 5.16

Solution
Because J varies with s, we must integrate Eq. 5.25. The current through the
shaded patch (Fig. 5.16) is Jda⊥, and da⊥ = s ds dφ. So

I =
∫

(ks)(s ds dφ) = 2πk
∫ a

0
s2 ds = 2πka3

3
.
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According to Eq. 5.25, the total current crossing a surface S can be written as

I =
∫

S
J da⊥ =

∫
S

J · da. (5.28)

(The dot product serves neatly to pick out the appropriate component of da.) In
particular, the charge per unit time leaving a volume V is∮

S
J · da =

∫
V
(∇ · J) dτ.

Because charge is conserved, whatever flows out through the surface must come
at the expense of what remains inside:∫

V
(∇ · J) dτ = − d

dt

∫
V

ρ dτ = −
∫

V

(
∂ρ

∂t

)
dτ.

(The minus sign reflects the fact that an outward flow decreases the charge left
in V .) Since this applies to any volume, we conclude that

∇ · J = −∂ρ

∂t
. (5.29)

This is the precise mathematical statement of local charge conservation; it is called
the continuity equation.

For future reference, let me summarize the “dictionary” we have implicitly de-
veloped for translating equations into the forms appropriate to point, line, surface,
and volume currents:

n∑
i=1

( )qi vi ∼
∫

line
( )I dl ∼

∫
surface

( )K da ∼
∫

volume
( )J dτ. (5.30)

This correspondence, which is analogous to q ∼ λ dl ∼ σ da ∼ ρ dτ for the var-
ious charge distributions, generates Eqs. 5.15, 5.24, and 5.27 from the original
Lorentz force law (5.1).

Problem 5.4 Suppose that the magnetic field in some region has the form

B = kz x̂

(where k is a constant). Find the force on a square loop (side a), lying in the yz
plane and centered at the origin, if it carries a current I , flowing counterclockwise,
when you look down the x axis.

Problem 5.5 A current I flows down a wire of radius a.

(a) If it is uniformly distributed over the surface, what is the surface current den-
sity K ?

(b) If it is distributed in such a way that the volume current density is inversely
proportional to the distance from the axis, what is J (s)?
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Problem 5.6

(a) A phonograph record carries a uniform density of “static electricity” σ . If it
rotates at angular velocity ω, what is the surface current density K at a distance
r from the center?

(b) A uniformly charged solid sphere, of radius R and total charge Q, is centered
at the origin and spinning at a constant angular velocity ω about the z axis. Find
the current density J at any point (r , θ , φ) within the sphere.

Problem 5.7 For a configuration of charges and currents confined within a volume
V , show that ∫

V
J dτ = dp/dt, (5.31)

where p is the total dipole moment. [Hint: evaluate
∫
V ∇ · (xJ) dτ .]

5.2 THE BIOT-SAVART LAW

5.2.1 Steady Currents

Stationary charges produce electric fields that are constant in time; hence the term
electrostatics.8 Steady currents produce magnetic fields that are constant in time;
the theory of steady currents is called magnetostatics.

Stationary charges ⇒ constant electric fields: electrostatics.
Steady currents ⇒ constant magnetic fields: magnetostatics.

By steady current I mean a continuous flow that has been going on forever,
without change and without charge piling up anywhere. (Some people call
them “stationary currents”; to my ear, that’s a contradiction in terms.) Formally,
electro/magnetostatics is the régime

∂ρ

∂t
= 0,

∂J
∂t

= 0, (5.32)

at all places and all times. Of course, there’s no such thing in practice as a truly
steady current, any more than there is a truly stationary charge. In this sense,
both electrostatics and magnetostatics describe artificial worlds that exist only in
textbooks. However, they represent suitable approximations as long as the actual
fluctuations are remote, or gradual—in fact, for most purposes magnetostatics
applies very well to household currents, which alternate 120 times a second!

8Actually, it is not necessary that the charges be stationary, but only that the charge density at
each point be constant. For example, the sphere in Prob. 5.6(b) produces an electrostatic field
1/4πε0(Q/r2)r̂, even though it is rotating, because ρ does not depend on t .
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Notice that a moving point charge cannot possibly constitute a steady current.
If it’s here one instant, it’s gone the next. This may seem like a minor thing to
you, but it’s a major headache for me. I developed each topic in electrostatics
by starting out with the simple case of a point charge at rest; then I generalized
to an arbitrary charge distribution by invoking the superposition principle. This
approach is not open to us in magnetostatics because a moving point charge does
not produce a static field in the first place. We are forced to deal with extended
current distributions right from the start, and, as a result, the arguments are bound
to be more cumbersome.

When a steady current flows in a wire, its magnitude I must be the same all
along the line; otherwise, charge would be piling up somewhere, and it wouldn’t
be a steady current. More generally, since ∂ρ/∂t = 0 in magnetostatics, the con-
tinuity equation (5.29) becomes

∇ · J = 0. (5.33)

5.2.2 The Magnetic Field of a Steady Current

The magnetic field of a steady line current is given by the Biot-Savart law:

B(r) = μ0

4π

∫
I × r̂
r2 dl ′ = μ0

4π
I
∫

dl′ × r̂
r2 . (5.34)

The integration is along the current path, in the direction of the flow; dl′ is an
element of length along the wire, and r, as always, is the vector from the source to
the point r (Fig. 5.17). The constant μ0 is called the permeability of free space:9

μ0 = 4π × 10−7 N/A2. (5.35)

These units are such that B itself comes out in newtons per ampere-meter (as
required by the Lorentz force law), or teslas (T):10

1 T = 1 N/(A · m). (5.36)

dl′

I

r

r

FIGURE 5.17

9This is an exact number, not an empirical constant. It serves (via Eq. 5.40) to define the ampere, and
the ampere in turn defines the coulomb.
10For some reason, in this one case the cgs unit (the gauss) is more commonly used than the SI unit:
1 tesla = 104 gauss. The earth’s magnetic field is about half a gauss; a fairly strong laboratory magnetic
field is, say, 10,000 gauss.
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As the starting point for magnetostatics, the Biot-Savart law plays a role analo-
gous to Coulomb’s law in electrostatics. Indeed, the 1/r2 dependence is common
to both laws.

Example 5.5. Find the magnetic field a distance s from a long straight wire
carrying a steady current I (Fig. 5.18).

s

d l′

l′

I

P

θ

α

r

FIGURE 5.18

I

θ1

θ2

Wire segment

FIGURE 5.19

Solution
In the diagram, (dl′ × r̂) points out of the page, and has the magnitude

dl ′ sin α = dl ′ cos θ.

Also, l ′ = s tan θ , so

dl ′ = s

cos2 θ
dθ,

and s = r cos θ , so

1

r2 = cos2 θ

s2
.

Thus

B = μ0 I

4π

∫ θ2

θ1

(
cos2 θ

s2

)(
s

cos2 θ

)
cos θ dθ

= μ0 I

4πs

∫ θ2

θ1

cos θ dθ = μ0 I

4πs
(sin θ2 − sin θ1). (5.37)

Equation 5.37 gives the field of any straight segment of wire, in terms of the
initial and final angles θ1 and θ2 (Fig. 5.19). Of course, a finite segment by itself
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could never support a steady current (where would the charge go when it got to
the end?), but it might be a piece of some closed circuit, and Eq. 5.37 would
then represent its contribution to the total field. In the case of an infinite wire,
θ1 = −π/2 and θ2 = π/2, so we obtain

B = μ0 I

2πs
. (5.38)

Notice that the field is inversely proportional to the distance from the wire—
just like the electric field of an infinite line charge. In the region below the wire,
B points into the page, and in general, it “circles around” the wire, in accordance
with the right-hand rule (Fig. 5.3):

B = μ0 I

2πs
φ̂. (5.39)

As an application, let’s find the force of attraction between two long, parallel
wires a distance d apart, carrying currents I1 and I2 (Fig. 5.20). The field at (2)
due to (1) is

B = μ0 I1

2πd
,

and it points into the page. The Lorentz force law (in the form appropriate to line
currents, Eq. 5.17) predicts a force directed towards (1), of magnitude

F = I2

(
μ0 I1

2πd

)∫
dl.

The total force, not surprisingly, is infinite, but the force per unit length is

f = μ0

2π

I1 I2

d
. (5.40)

If the currents are antiparallel (one up, one down), the force is repulsive—
consistent again with the qualitative observations in Sect. 5.1.1.

I1 I2

d

(1) (2)

FIGURE 5.20
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Example 5.6. Find the magnetic field a distance z above the center of a circular
loop of radius R, which carries a steady current I (Fig. 5.21).

B

θ

θ

dB

dl′

z

R

r

FIGURE 5.21

Solution
The field dB attributable to the segment dl′ points as shown. As we integrate dl′
around the loop, dB sweeps out a cone. The horizontal components cancel, and
the vertical components combine, to give

B(z) = μ0

4π
I
∫

dl ′

r2 cos θ.

(Notice that dl′ and r are perpendicular, in this case; the factor of cos θ projects
out the vertical component.) Now, cos θ and r2 are constants, and

∫
dl ′ is simply

the circumference, 2π R, so

B(z) = μ0 I

4π

(
cos θ

r2

)
2π R = μ0 I

2

R2

(R2 + z2)3/2
. (5.41)

For surface and volume currents, the Biot-Savart law becomes

B(r) = μ0

4π

∫
K(r′) × r̂

r2 da′ and B(r) = μ0

4π

∫
J(r′) × r̂
r2 dτ ′, (5.42)

respectively. You might be tempted to write down the corresponding formula for
a moving point charge, using the “dictionary” (Eq. 5.30):

B(r) = μ0

4π

qv × r̂
r2 , (5.43)
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but this is simply wrong.11 As I mentioned earlier, a point charge does not con-
stitute a steady current, and the Biot-Savart law, which only holds for steady cur-
rents, does not correctly determine its field.

The superposition principle applies to magnetic fields just as it does to electric
fields: if you have a collection of source currents, the net field is the (vector) sum
of the fields due to each of them taken separately.

Problem 5.8

(a) Find the magnetic field at the center of a square loop, which carries a steady
current I . Let R be the distance from center to side (Fig. 5.22).

(b) Find the field at the center of a regular n-sided polygon, carrying a steady cur-
rent I . Again, let R be the distance from the center to any side.

(c) Check that your formula reduces to the field at the center of a circular loop, in
the limit n → ∞.

Problem 5.9 Find the magnetic field at point P for each of the steady current con-
figurations shown in Fig. 5.23.

R

I

I

FIGURE 5.22

I

I

I

I

I

P
P

Rb

a
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FIGURE 5.23

Problem 5.10

(a) Find the force on a square loop placed as shown in Fig. 5.24(a), near an infinite
straight wire. Both the loop and the wire carry a steady current I .

(b) Find the force on the triangular loop in Fig. 5.24(b).

I

I
I

(a)

s

a
a

I

(b)

s

a a
a

FIGURE 5.24

11I say this loud and clear to emphasize the point of principle; actually, Eq. 5.43 is approximately
right for nonrelativistic charges (v 
 c), under conditions where retardation can be neglected (see
Ex. 10.4).
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Problem 5.11 Find the magnetic field at point P on the axis of a tightly wound
solenoid (helical coil) consisting of n turns per unit length wrapped around a cylin-
drical tube of radius a and carrying current I (Fig. 5.25). Express your answer in
terms of θ1 and θ2 (it’s easiest that way). Consider the turns to be essentially circu-
lar, and use the result of Ex. 5.6. What is the field on the axis of an infinite solenoid
(infinite in both directions)?

θ2

θ1

P

a

FIGURE 5.25

Problem 5.12 Use the result of Ex. 5.6 to calculate the magnetic field at the center
of a uniformly charged spherical shell, of radius R and total charge Q, spinning at
constant angular velocity ω.

Problem 5.13 Suppose you have two infinite straight line charges λ, a distance d
apart, moving along at a constant speed v (Fig. 5.26). How great would v have to
be in order for the magnetic attraction to balance the electrical repulsion? Work out
the actual number. Is this a reasonable sort of speed?12

d

λ

λ
�

�

FIGURE 5.26

5.3 THE DIVERGENCE AND CURL OF B

5.3.1 Straight-Line Currents

The magnetic field of an infinite straight wire is shown in Fig. 5.27 (the current is
coming out of the page). At a glance, it is clear that this field has a nonzero curl
(something you’ll never see in an electrostatic field); let’s calculate it.

According to Eq. 5.38, the integral of B around a circular path of radius s,
centered at the wire, is∮

B · dl =
∮

μ0 I

2πs
dl = μ0 I

2πs

∮
dl = μ0 I.

Notice that the answer is independent of s; that’s because B decreases at the same
rate as the circumference increases. In fact, it doesn’t have to be a circle; any old

12If you’ve studied special relativity, you may be tempted to look for complexities in this problem
that are not really there—λ and v are both measured in the laboratory frame, and this is ordinary
electrostatics.



230 Chapter 5 Magnetostatics

B

FIGURE 5.27

loop that encloses the wire would give the same answer. For if we use cylindrical
coordinates (s, φ, z), with the current flowing along the z axis, B = (μ0 I/2πs)φ̂
and dl = ds ŝ + s dφ φ̂ + dz ẑ, so

∮
B · dl = μ0 I

2π

∮
1

s
s dφ = μ0 I

2π

∫ 2π

0
dφ = μ0 I.

This assumes the loop encircles the wire exactly once; if it went around twice,
then φ would run from 0 to 4π , and if it didn’t enclose the wire at all, then φ

would go from φ1 to φ2 and back again, with
∫

dφ = 0 (Fig. 5.28).
Now suppose we have a bundle of straight wires. Each wire that passes through

our loop contributes μ0 I , and those outside contribute nothing (Fig. 5.29). The
line integral will then be

∮
B · dl = μ0 Ienc, (5.44)

where Ienc stands for the total current enclosed by the integration path. If the flow
of charge is represented by a volume current density J, the enclosed current is

Ienc =
∫

J · da, (5.45)

Wire

Loop

φ2 φ1

FIGURE 5.28

I5

I1

I2

I3

I4

FIGURE 5.29
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with the integral taken over any surface bounded by the loop. Applying Stokes’
theorem to Eq. 5.44, then,

∫
(∇ × B) · da = μ0

∫
J · da,

and hence

∇ × B = μ0J. (5.46)

With minimal labor, we have actually obtained the general formula for the curl
of B. But our derivation is seriously flawed by the restriction to infinite straight
line currents (and combinations thereof). Most current configurations cannot be
constructed out of infinite straight wires, and we have no right to assume that
Eq. 5.46 applies to them. So the next section is devoted to the formal derivation
of the divergence and curl of B, starting from the Biot-Savart law itself.

5.3.2 The Divergence and Curl of B

The Biot-Savart law for the general case of a volume current reads

B(r) = μ0

4π

∫
J(r′) × r̂
r2 dτ ′. (5.47)

This formula gives the magnetic field at a point r = (x, y, z) in terms of an inte-
gral over the current distribution J(x ′, y′, z′) (Fig. 5.30). It is best to be absolutely
explicit at this stage:

B is a function of (x, y, z),

J is a function of (x ′, y′, z′),

r = (x − x ′) x̂ + (y − y′) ŷ + (z − z′) ẑ,

dτ ′ = dx ′ dy′ dz′.

The integration is over the primed coordinates; the divergence and the curl of B
are with respect to the unprimed coordinates.

r

(x, y, z)

(x′, y′, z′)

dτ′

r

FIGURE 5.30
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Applying the divergence to Eq. 5.47, we obtain:

∇ · B = μ0

4π

∫
∇ ·

(
J × r̂

r2

)
dτ ′. (5.48)

Invoking product rule number 6,

∇ ·
(

J × r̂
r2

)
= r̂
r2 · (∇ × J) − J ·

(
∇ × r̂

r2

)
. (5.49)

But ∇ × J = 0, because J doesn’t depend on the unprimed variables, while
∇ × (r̂/r2) = 0 (Prob. 1.63), so

∇ · B = 0. (5.50)

Evidently the divergence of the magnetic field is zero.
Applying the curl to Eq. 5.47, we obtain:

∇ × B = μ0

4π

∫
∇ ×

(
J × r̂

r2

)
dτ ′. (5.51)

Again, our strategy is to expand the integrand, using the appropriate product
rule—in this case number 8:

∇ ×
(

J × r̂
r2

)
= J

(
∇ · r̂r2

)
− (J · ∇)

r̂
r2 . (5.52)

(I have dropped terms involving derivatives of J, because J does not depend on
x, y, z.) The second term integrates to zero, as we’ll see in the next paragraph.
The first term involves the divergence we were at pains to calculate in Chapter 1
(Eq. 1.100):

∇ ·
( r̂
r2

)
= 4πδ3(r). (5.53)

Thus

∇ × B = μ0

4π

∫
J(r′)4πδ3(r − r′) dτ ′ = μ0J(r),

which confirms that Eq. 5.46 is not restricted to straight-line currents, but holds
quite generally in magnetostatics.

To complete the argument, however, we must check that the second term in
Eq. 5.52 integrates to zero. Because the derivative acts only on r̂/r2, we can switch
from ∇ to ∇′ at the cost of a minus sign:13

−(J · ∇)
r̂
r2 = (J · ∇′)

r̂
r2 . (5.54)

13The point here is that r depends only on the difference between the coordinates; note that
(∂/∂x) f (x − x ′) = −(∂/∂x ′) f (x − x ′).
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The x component, in particular, is

(J · ∇′)
(

x − x ′

r3

)
= ∇′ ·

[
(x − x ′)
r3 J

]
−
(

x − x ′

r3

)
(∇′ · J)

(using product rule 5). Now, for steady currents the divergence of J is zero
(Eq. 5.33), so

[
−(J · ∇)

r
r2
]

x
= ∇′ ·

[
(x − x ′)
r3 J

]
,

and therefore this contribution to the integral (Eq. 5.51) can be written

∫
V

∇′ ·
[
(x − x ′)
r3 J

]
dτ ′ =

∮
S

(x − x ′)
r3 J · da′. (5.55)

(The reason for switching from ∇ to ∇′ was to permit this integration by parts.)
But what region are we integrating over? Well, it’s the volume that appears in
the Biot-Savart law (Eq. 5.47)—large enough, that is, to include all the current.
You can make it bigger than that, if you like; J = 0 out there anyway, so it will
add nothing to the integral. The essential point is that on the boundary the cur-
rent is zero (all current is safely inside) and hence the surface integral (Eq. 5.55)
vanishes.14

5.3.3 Ampère’s Law

The equation for the curl of B,

∇ × B = μ0J, (5.56)

is called Ampère’s law (in differential form). It can be converted to integral form
by the usual device of applying one of the fundamental theorems—in this case
Stokes’ theorem: ∫

(∇ × B) · da =
∮

B · dl = μ0

∫
J · da.

Now,
∫

J · da is the total current passing through the surface (Fig. 5.31), which
we call Ienc (the current enclosed by the Amperian loop). Thus

∮
B · dl = μ0 Ienc. (5.57)

14If J itself extends to infinity (as in the case of an infinite straight wire), the surface integral is still
typically zero, though the analysis calls for greater care.
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Surface

Boundary line

J

FIGURE 5.31

This is the integral version of Ampère’s law; it generalizes Eq. 5.44 to arbi-
trary steady currents. Notice that Eq. 5.57 inherits the sign ambiguity of Stokes’
theorem (Sect. 1.3.5): Which way around the loop am I supposed to go? And
which direction through the surface corresponds to a “positive” current? The res-
olution, as always, is the right-hand rule: If the fingers of your right hand indicate
the direction of integration around the boundary, then your thumb defines the
direction of a positive current.

Just as the Biot-Savart law plays a role in magnetostatics that Coulomb’s law
assumed in electrostatics, so Ampère’s plays the part of Gauss’s:

{
Electrostatics : Coulomb → Gauss,
Magnetostatics : Biot−Savart → Ampère.

In particular, for currents with appropriate symmetry, Ampère’s law in integral
form offers a lovely and extraordinarily efficient way of calculating the magnetic
field.

Example 5.7. Find the magnetic field a distance s from a long straight wire
(Fig. 5.32), carrying a steady current I (the same problem we solved in Ex. 5.5,
using the Biot-Savart law).

Solution
We know the direction of B is “circumferential,” circling around the wire as indi-
cated by the right-hand rule. By symmetry, the magnitude of B is constant around
an Amperian loop of radius s, centered on the wire. So Ampère’s law gives

∮
B · dl = B

∮
dl = B2πs = μ0 Ienc = μ0 I,

or

B = μ0 I

2πs
.

This is the same answer we got before (Eq. 5.38), but it was obtained this time
with far less effort.
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s

B

I

Amperian loop

FIGURE 5.32

Sheet of current

Amperian loop

z

y

x l

K

FIGURE 5.33

Example 5.8. Find the magnetic field of an infinite uniform surface current
K = K x̂, flowing over the xy plane (Fig. 5.33).

Solution
First of all, what is the direction of B? Could it have any x component? No: A
glance at the Biot-Savart law (Eq. 5.42) reveals that B is perpendicular to K.
Could it have a z component? No again. You could confirm this by noting that
any vertical contribution from a filament at +y is canceled by the corresponding
filament at −y. But there is a nicer argument: Suppose the field pointed away from
the plane. By reversing the direction of the current, I could make it point toward
the plane (in the Biot-Savart law, changing the sign of the current switches the sign
of the field). But the z component of B cannot possibly depend on the direction of
the current in the xy plane. (Think about it!) So B can only have a y component,
and a quick check with your right hand should convince you that it points to the
left above the plane and to the right below it.

With this in mind, we draw a rectangular Amperian loop as shown in Fig. 5.33,
parallel to the yz plane and extending an equal distance above and below the
surface. Applying Ampère’s law,∮

B · dl = 2Bl = μ0 Ienc = μ0 Kl,

(one Bl comes from the top segment and the other from the bottom), so B =
(μ0/2)K , or, more precisely,

B =
{ +(μ0/2)K ŷ for z < 0,

−(μ0/2)K ŷ for z > 0.
(5.58)

Notice that the field is independent of the distance from the plane, just like the
electric field of a uniform surface charge (Ex. 2.5).

Example 5.9. Find the magnetic field of a very long solenoid, consisting of n
closely wound turns per unit length on a cylinder of radius R, each carrying a
steady current I (Fig. 5.34). [The point of making the windings so close is that
one can then pretend each turn is circular. If this troubles you (after all, there is
a net current I in the direction of the solenoid’s axis, no matter how tight the
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I

FIGURE 5.34

K

FIGURE 5.35

winding), picture instead a sheet of aluminum foil wrapped around the cylin-
der, carrying the equivalent uniform surface current K = nI (Fig. 5.35). Or make
a double winding, going up to one end and then—always in the same sense—
going back down again, thereby eliminating the net longitudinal current. But, in
truth, this is all unnecessary fastidiousness, for the field inside a solenoid is huge
(relatively speaking), and the field of the longitudinal current is at most a tiny
refinement.]

Solution
First of all, what is the direction of B? Could it have a radial component? No. For
suppose Bs were positive; if we reversed the direction of the current, Bs would
then be negative. But switching I is physically equivalent to turning the solenoid
upside down, and that certainly should not alter the radial field. How about a
“circumferential” component? No. For Bφ would be constant around an Amperian
loop concentric with the solenoid (Fig. 5.36), and hence

∮
B · dl = Bφ(2πs) = μ0 Ienc = 0,

since the loop encloses no current.
So the magnetic field of an infinite, closely wound solenoid runs parallel to the

axis. From the right-hand rule, we expect that it points upward inside the solenoid
and downward outside. Moreover, it certainly approaches zero as you go very far

s

Amperian loop

FIGURE 5.36

Amperian loops

L

b

a

2 1

FIGURE 5.37
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away. With this in mind, let’s apply Ampère’s law to the two rectangular loops in
Fig. 5.37. Loop 1 lies entirely outside the solenoid, with its sides at distances a
and b from the axis:∮

B · dl = [B(a) − B(b)]L = μ0 Ienc = 0,

so

B(a) = B(b).

Evidently the field outside does not depend on the distance from the axis. But we
agreed that it goes to zero for large s. It must therefore be zero everywhere! (This
astonishing result can also be derived from the Biot-Savart law, of course, but it’s
much more difficult. See Prob. 5.46.)

As for loop 2, which is half inside and half outside, Ampère’s law gives∮
B · dl = BL = μ0 Ienc = μ0nI L ,

where B is the field inside the solenoid. (The right side of the loop contributes
nothing, since B = 0 out there.) Conclusion:

B =
{

μ0nI ẑ, inside the solenoid,

0, outside the solenoid.
(5.59)

Notice that the field inside is uniform—it doesn’t depend on the distance from
the axis. In this sense the solenoid is to magnetostatics what the parallel-plate
capacitor is to electrostatics: a simple device for producing strong uniform
fields.

Like Gauss’s law, Ampère’s law is always true (for steady currents), but it is
not always useful. Only when the symmetry of the problem enables you to pull B
outside the integral

∮
B · dl can you calculate the magnetic field from Ampère’s

law. When it does work, it’s by far the fastest method; when it doesn’t, you have
to fall back on the Biot-Savart law. The current configurations that can be handled
by Ampère’s law are

1. Infinite straight lines (prototype: Ex. 5.7).

2. Infinite planes (prototype: Ex. 5.8).

3. Infinite solenoids (prototype: Ex. 5.9).

4. Toroids (prototype: Ex. 5.10).

The last of these is a surprising and elegant application of Ampère’s law. As in
Exs. 5.8 and 5.9, the hard part is figuring out the direction of the field (which we
will now have done, once and for all, for each of the four geometries); the actual
application of Ampère’s law takes only one line.
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Example 5.10. A toroidal coil consists of a circular ring, or “donut,” around
which a long wire is wrapped (Fig. 5.38). The winding is uniform and tight
enough so that each turn can be considered a plane closed loop. The cross-
sectional shape of the coil is immaterial. I made it rectangular in Fig. 5.38 for
the sake of simplicity, but it could just as well be circular or even some weird
asymmetrical form, as in Fig. 5.39, as long as the shape remains the same all the
way around the ring. In that case, it follows that the magnetic field of the toroid is
circumferential at all points, both inside and outside the coil.

FIGURE 5.38

Proof. According to the Biot-Savart law, the field at r due to the current element
at r′ is

dB = μ0

4π

I × r
r3 dl ′.

We may as well put r in the xz plane (Fig. 5.39), so its Cartesian components are
(x, 0, z), while the source coordinates are

r′ = (s ′ cos φ′, s ′ sin φ′, z′).

z′ s′

x

y

z
z

x

φ′−φ′

r

r

r′

r′′

I
I

FIGURE 5.39
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Then

r = (x − s ′ cos φ′,−s ′ sin φ′, z − z′).

Since the current has no φ component, I = Is ŝ + Iz ẑ, or (in Cartesian coordi-
nates)

I = (Is cos φ′, Is sin φ′, Iz).

Accordingly,

I × r =
⎡
⎢⎣

x̂ ŷ ẑ

Is cos φ′ Is sin φ′ Iz

(x − s ′ cos φ′) (−s ′ sin φ′) (z − z′)

⎤
⎥⎦

= [
sin φ′ (Is(z − z′) + s ′ Iz

)]
x̂ + [

Iz(x − s ′ cos φ′) − Is cos φ′(z − z′)
]

ŷ

+ [−Is x sin φ′] ẑ.

But there is a symmetrically situated current element at r′′, with the same s ′, the
same r, the same dl ′, the same Is , and the same Iz , but negative φ′ (Fig. 5.39).
Because sin φ′ changes sign, the x̂ and ẑ contributions from r′ and r′′ cancel,
leaving only a ŷ term. Thus the field at r is in the ŷ direction, and in general the
field points in the φ̂ direction. �

Now that we know the field is circumferential, determining its magnitude is
ridiculously easy. Just apply Ampère’s law to a circle of radius s about the axis of
the toroid:

B2πs = μ0 Ienc,

and hence

B(r) =

⎧⎪⎨
⎪⎩

μ0 N I

2πs
φ̂, for points inside the coil,

0, for points outside the coil,

(5.60)

where N is the total number of turns.

Problem 5.14 A steady current I flows down a long cylindrical wire of radius a
(Fig. 5.40). Find the magnetic field, both inside and outside the wire, if

(a) The current is uniformly distributed over the outside surface of the wire.

(b) The current is distributed in such a way that J is proportional to s, the distance
from the axis.
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Problem 5.15 A thick slab extending from z = −a to z = +a (and infinite in the
x and y directions) carries a uniform volume current J = J x̂ (Fig. 5.41). Find the
magnetic field, as a function of z, both inside and outside the slab.

Problem 5.16 Two long coaxial solenoids each carry current I , but in opposite
directions, as shown in Fig. 5.42. The inner solenoid (radius a) has n1 turns per
unit length, and the outer one (radius b) has n2. Find B in each of the three regions:
(i) inside the inner solenoid, (ii) between them, and (iii) outside both.

FIGURE 5.42

−σ
+σ

�
�

FIGURE 5.43

Problem 5.17 A large parallel-plate capacitor with uniform surface charge σ on the
upper plate and −σ on the lower is moving with a constant speed v, as shown in
Fig. 5.43.

(a) Find the magnetic field between the plates and also above and below them.

(b) Find the magnetic force per unit area on the upper plate, including its direction.

(c) At what speed v would the magnetic force balance the electrical force?15

Problem 5.18 Show that the magnetic field of an infinite solenoid runs parallel to!
the axis, regardless of the cross-sectional shape of the coil, as long as that shape
is constant along the length of the solenoid. What is the magnitude of the field,
inside and outside of such a coil? Show that the toroid field (Eq. 5.60) reduces to
the solenoid field, when the radius of the donut is so large that a segment can be
considered essentially straight.

Problem 5.19 In calculating the current enclosed by an Amperian loop, one must,
in general, evaluate an integral of the form

Ienc =
∫
S

J · da.

15See footnote to Prob. 5.13.
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The trouble is, there are infinitely many surfaces that share the same boundary line.
Which one are we supposed to use?

5.3.4 Comparison of Magnetostatics and Electrostatics

The divergence and curl of the electrostatic field are
⎧⎪⎪⎨
⎪⎪⎩

∇ · E = 1

ε0
ρ, (Gauss’s law);

∇ × E = 0, (no name).

These are Maxwell’s equations for electrostatics. Together with the boundary
condition E → 0 far from all charges,16 Maxwell’s equations determine the field,
if the source charge density ρ is given; they contain essentially the same infor-
mation as Coulomb’s law plus the principle of superposition. The divergence and
curl of the magnetostatic field are

⎧⎪⎨
⎪⎩

∇ · B = 0, (no name);

∇ × B = μ0J, (Ampère’s law).

These are Maxwell’s equations for magnetostatics. Again, together with the
boundary condition B → 0 far from all currents, Maxwell’s equations determine
the magnetic field; they are equivalent to the Biot-Savart law (plus superposition).
Maxwell’s equations and the force law

F = Q(E + v × B)

constitute the most elegant formulation of electrostatics and magnetostatics.
The electric field diverges away from a (positive) charge; the magnetic field

line curls around a current (Fig. 5.44). Electric field lines originate on positive
charges and terminate on negative ones; magnetic field lines do not begin or end
anywhere—to do so would require a nonzero divergence. They typically form
closed loops or extend out to infinity.17 To put it another way, there are no point
sources for B, as there are for E; there exists no magnetic analog to electric
charge. This is the physical content of the statement ∇ · B = 0. Coulomb and
others believed that magnetism was produced by magnetic charges (magnetic
monopoles, as we would now call them), and in some older books you will still
find references to a magnetic version of Coulomb’s law, giving the force of at-
traction or repulsion between them. It was Ampère who first speculated that all
magnetic effects are attributable to electric charges in motion (currents). As far

16In those artificial problems where the charge (or current) extends to infinity—infinite planes, for
example—symmetry considerations can sometimes take the place of boundary conditions.
17A third possibility turns out to be surprisingly common: they can form chaotic tangles. See
M. Lieberherr, Am. J. Phys. 78, 1117 (2010).



242 Chapter 5 Magnetostatics
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as we know, Ampère was right; nevertheless, it remains an open experimental
question whether magnetic monopoles exist in nature (they are obviously pretty
rare, or somebody would have found one18), and in fact some recent elementary
particle theories require them. For our purposes, though, B is divergenceless, and
there are no magnetic monopoles. It takes a moving electric charge to produce a
magnetic field, and it takes another moving electric charge to “feel” a magnetic
field.

Typically, electric forces are enormously larger than magnetic ones. That’s not
something intrinsic to the theory; it has to do with the sizes of the fundamen-
tal constants ε0 and μ0. In general, it is only when both the source charges and
the test charge are moving at velocities comparable to the speed of light that the
magnetic force approaches the electric force in strength. (Problems 5.13 and 5.17
illustrate this rule.) How is it, then, that we notice magnetic effects at all? The
answer is that both in the production of a magnetic field (Biot-Savart) and in its
detection (Lorentz), it is the current that matters, and we can compensate for a
smallish velocity by pouring huge amounts of charge down the wire. Ordinarily,
this charge would simultaneously generate so large an electric force as to swamp
the magnetic one. But if we arrange to keep the wire neutral, by embedding in it
an equal quantity of opposite charge at rest, the electric field cancels out, leaving
the magnetic field to stand alone. It sounds very elaborate, but of course this is
precisely what happens in an ordinary current carrying wire.

Problem 5.20

(a) Find the density ρ of mobile charges in a piece of copper, assuming each atom
contributes one free electron. [Look up the necessary physical constants.]

(b) Calculate the average electron velocity in a copper wire 1 mm in diameter,
carrying a current of 1 A. [Note: This is literally a snail’s pace. How, then, can
you carry on a long distance telephone conversation?]

18An apparent detection (B. Cabrera, Phys. Rev. Lett. 48, 1378 (1982)) has never been reproduced—
and not for want of trying. For a delightful brief history of ideas about magnetism, see Chapter 1 in
D. C. Mattis, The Theory of Magnetism (New York: Harper & Row, 1965).
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(c) What is the force of attraction between two such wires, 1 cm apart?

(d) If you could somehow remove the stationary positive charges, what would the
electrical repulsion force be? How many times greater than the magnetic force
is it?

Problem 5.21 Is Ampère’s law consistent with the general rule (Eq. 1.46) that
divergence-of-curl is always zero? Show that Ampère’s law cannot be valid, in gen-
eral, outside magnetostatics. Is there any such “defect” in the other three Maxwell
equations?

Problem 5.22 Suppose there did exist magnetic monopoles. How would you mod-
ify Maxwell’s equations and the force law to accommodate them? If you think there
are several plausible options, list them, and suggest how you might decide experi-
mentally which one is right.

5.4 MAGNETIC VECTOR POTENTIAL

5.4.1 The Vector Potential

Just as ∇ × E = 0 permitted us to introduce a scalar potential (V ) in electrostatics,

E = −∇V,

so ∇ · B = 0 invites the introduction of a vector potential A in magnetostatics:

B = ∇ × A. (5.61)

The former is authorized by Theorem 1 (of Sect. 1.6.2), the latter by Theorem 2
(The proof of Theorem 2 is developed in Prob. 5.31). The potential formulation
automatically takes care of ∇ · B = 0 (since the divergence of a curl is always
zero); there remains Ampère’s law:

∇ × B = ∇ × (∇ × A) = ∇(∇ · A) − ∇2A = μ0J. (5.62)

Now, the electric potential had a built-in ambiguity: you can add to V any
function whose gradient is zero (which is to say, any constant), without altering
the physical quantity E. Likewise, you can add to A any function whose curl
vanishes (which is to say, the gradient of any scalar), with no effect on B. We can
exploit this freedom to eliminate the divergence of A:

∇ · A = 0. (5.63)

To prove that this is always possible, suppose that our original potential, A0,
is not divergenceless. If we add to it the gradient of λ (A = A0 + ∇λ), the new
divergence is

∇ · A = ∇ · A0 + ∇2λ.
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We can accommodate Eq. 5.63, then, if a function λ can be found that satisfies

∇2λ = −∇ · A0.

But this is mathematically identical to Poisson’s equation (2.24),

∇2V = − ρ

ε0
,

with ∇ · A0 in place of ρ/ε0 as the “source.” And we know how to solve Poisson’s
equation—that’s what electrostatics is all about (“given the charge distribution,
find the potential”). In particular, if ρ goes to zero at infinity, the solution is
Eq. 2.29:

V = 1

4πε0

∫
ρ

r dτ ′,

and by the same token, if ∇ · A0 goes to zero at infinity, then

λ = 1

4π

∫ ∇ · A0

r dτ ′.

If ∇ · A0 does not go to zero at infinity, we’ll have to use other means to dis-
cover the appropriate λ, just as we get the electric potential by other means when
the charge distribution extends to infinity. But the essential point remains: It is
always possible to make the vector potential divergenceless. To put it the other
way around: the definition B = ∇ × A specifies the curl of A, but it doesn’t say
anything about the divergence—we are at liberty to pick that as we see fit, and
zero is ordinarily the simplest choice.

With this condition on A, Ampère’s law (Eq. 5.62) becomes

∇2A = −μ0J. (5.64)

This again is nothing but Poisson’s equation—or rather, it is three Poisson’s equa-
tions, one for each Cartesian19 component. Assuming J goes to zero at infinity,
we can read off the solution:

A(r) = μ0

4π

∫
J(r′)
r dτ ′. (5.65)

19In Cartesian coordinates, ∇2A = (∇2 Ax )x̂ + (∇2 Ay)ŷ + (∇2 Az)ẑ, so Eq. 5.64 reduces to ∇2 Ax =
−μ0 Jx , ∇2 Ay = −μ0 Jy , and ∇2 Az = −μ0 Jz . In curvilinear coordinates the unit vectors them-
selves are functions of position, and must be differentiated, so it is not the case, for example, that
∇2 Ar = −μ0 Jr . Remember that even if you plan to evaluate integrals such as 5.65 using curvilinear
coordinates, you must first express J in terms of its Cartesian components (see Sect. 1.4.1).
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For line and surface currents,

A = μ0

4π

∫
I
r dl ′ = μ0 I

4π

∫
1

r dl′; A = μ0

4π

∫
K
r da′. (5.66)

(If the current does not go to zero at infinity, we have to find other ways to get
A; some of these are explored in Ex. 5.12 and in the problems at the end of the
section.)

It must be said that A is not as useful as V . For one thing, it’s still a vector,
and although Eqs. 5.65 and 5.66 are somewhat easier to work with than the Biot-
Savart law, you still have to fuss with components. It would be nice if we could
get away with a scalar potential

B = −∇U, (5.67)

but this is incompatible with Ampère’s law, since the curl of a gradient is always
zero. (A magnetostatic scalar potential can be used, if you stick scrupulously
to simply-connected, current-free regions, but as a theoretical tool, it is of limited
interest. See Prob. 5.29.) Moreover, since magnetic forces do no work, A does
not admit a simple physical interpretation in terms of potential energy per unit
charge. (In some contexts it can be interpreted as momentum per unit charge.20)
Nevertheless, the vector potential has substantial theoretical importance, as we
shall see in Chapter 10.

Example 5.11. A spherical shell of radius R, carrying a uniform surface charge
σ , is set spinning at angular velocity ωωω. Find the vector potential it produces at
point r (Fig. 5.45).

Solution
It might seem natural to set the polar axis along ωωω, but in fact the integration
is easier if we let r lie on the z axis, so that ωωω is tilted at an angle ψ . We may
as well orient the x axis so that ωωω lies in the xz plane, as shown in Fig. 5.46.
According to Eq. 5.66,

R

ψ

ω

r

FIGURE 5.45

r′

r r

θ′ψ

ω

x

y

z

da′

φ′

FIGURE 5.46

20M. D. Semon and J. R. Taylor, Am. J. Phys. 64, 1361 (1996).
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A(r) = μ0

4π

∫
K(r′)
r da′,

where K = σv, r = √
R2 + r2 − 2Rr cos θ ′, and da′ = R2 sin θ ′ dθ ′ dφ′. Now

the velocity of a point r′ in a rotating rigid body is given by ωωω × r′; in this case,

v = ωωω × r′ =
∣∣∣∣∣∣

x̂ ŷ ẑ
ω sin ψ 0 ω cos ψ

R sin θ ′ cos φ′ R sin θ ′ sin φ′ R cos θ ′

∣∣∣∣∣∣
= Rω

[−(
cos ψ sin θ ′ sin φ′) x̂+(cos ψ sin θ ′ cos φ′− sin ψ cos θ ′) ŷ

+ (sin ψ sin θ ′ sin φ′) ẑ
]
.

Notice that each of these terms, save one, involves either sin φ′ or cos φ′. Since∫ 2π

0
sin φ′ dφ′ =

∫ 2π

0
cos φ′ dφ′ = 0,

such terms contribute nothing. There remains

A(r) = −μ0 R3σω sin ψ

2

(∫ π

0

cos θ ′ sin θ ′
√

R2 + r2 − 2Rr cos θ ′ dθ ′
)

ŷ.

Letting u ≡ cos θ ′, the integral becomes

∫ +1

−1

u√
R2 + r2 − 2Rru

du = − (R2 + r2 + Rru)

3R2r2

√
R2 + r2 − 2Rru

∣∣∣∣
+1

−1

= − 1

3R2r2

[
(R2 + r2 + Rr)|R − r |
−(R2 + r2 − Rr)(R + r)

]
.

If the point r lies inside the sphere, then R > r , and this expression reduces to
(2r/3R2); if r lies outside the sphere, so that R < r , it reduces to (2R/3r2). Not-
ing that (ωωω × r) = −ωr sin ψ ŷ, we have, finally,

A(r) =

⎧⎪⎨
⎪⎩

μ0 Rσ

3
(ωωω × r), for points inside the sphere,

μ0 R4σ

3r3
(ωωω × r), for points outside the sphere.

(5.68)

Having evaluated the integral, I revert to the “natural” coordinates of Fig. 5.45,
in which ωωω coincides with the z axis and the point r is at (r, θ, φ):

A(r, θ, φ) =

⎧⎪⎨
⎪⎩

μ0 Rωσ

3
r sin θ φ̂, (r ≤ R),

μ0 R4ωσ

3

sin θ

r2
φ̂, (r ≥ R).

(5.69)
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Curiously, the field inside this spherical shell is uniform:

B = ∇ × A = 2μ0 Rωσ

3
(cos θ r̂ − sin θ θ̂) = 2

3
μ0σ Rω ẑ = 2

3
μ0σ Rωωω. (5.70)

Example 5.12. Find the vector potential of an infinite solenoid with n turns per
unit length, radius R, and current I .

Solution
This time we cannot use Eq. 5.66, since the current itself extends to infinity. But
here’s a cute method that does the job. Notice that∮

A · dl =
∫

(∇ × A) · da =
∫

B · da = �, (5.71)

where � is the flux of B through the loop in question. This is reminiscent of
Ampère’s law in integral form (Eq. 5.57),∮

B · dl = μ0 Ienc.

In fact, it’s the same equation, with B → A and μ0 Ienc → �. If symmetry per-
mits, we can determine A from � in the same way we got B from Ienc, in
Sect. 5.3.3. The present problem (with a uniform longitudinal magnetic field
μ0nI inside the solenoid and no field outside) is analogous to the Ampère’s
law problem of a fat wire carrying a uniformly distributed current. The vector
potential is “circumferential” (it mimics the magnetic field in the analog); using a
circular “Amperian loop” at radius s inside the solenoid, we have∮

A · dl = A(2πs) =
∫

B · da = μ0nI (πs2),

so

A = μ0nI

2
s φ̂, for s ≤ R. (5.72)

For an Amperian loop outside the solenoid, the flux is∫
B · da = μ0nI (π R2),

since the field only extends out to R. Thus

A = μ0nI

2

R2

s
φ̂, for s ≥ R. (5.73)

If you have any doubts about this answer, check it: Does ∇ × A = B? Does
∇ · A = 0? If so, we’re done.
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Typically, the direction of A mimics the direction of the current. For instance,
both were azimuthal in Exs. 5.11 and 5.12. Indeed, if all the current flows in
one direction, then Eq. 5.65 suggests that A must point that way too. Thus the
potential of a finite segment of straight wire (Prob. 5.23) is in the direction of the
current. Of course, if the current extends to infinity you can’t use Eq. 5.65 in the
first place (see Probs. 5.26 and 5.27). Moreover, you can always add an arbitrary
constant vector to A—this is analogous to changing the reference point for V , and
it won’t affect the divergence or curl of A, which is all that matters (in Eq. 5.65
we have chosen the constant so that A goes to zero at infinity). In principle you
could even use a vector potential that is not divergenceless, in which case all bets
are off. Despite these caveats, the essential point remains: Ordinarily the direction
of A will match the direction of the current.

Problem 5.23 Find the magnetic vector potential of a finite segment of straight wire
carrying a current I . [Put the wire on the z axis, from z1 to z2, and use Eq. 5.66.]
Check that your answer is consistent with Eq. 5.37.

Problem 5.24 What current density would produce the vector potential, A = k φ̂

(where k is a constant), in cylindrical coordinates?

Problem 5.25 If B is uniform, show that A(r) = − 1
2 (r × B) works. That is, check

that ∇ · A = 0 and ∇ × A = B. Is this result unique, or are there other functions
with the same divergence and curl?

Problem 5.26

(a) By whatever means you can think of (short of looking it up), find the vector
potential a distance s from an infinite straight wire carrying a current I . Check
that ∇ · A = 0 and ∇ × A = B.

(b) Find the magnetic potential inside the wire, if it has radius R and the current is
uniformly distributed.

Problem 5.27 Find the vector potential above and below the plane surface current
in Ex. 5.8.

Problem 5.28

(a) Check that Eq. 5.65 is consistent with Eq. 5.63, by applying the divergence.

(b) Check that Eq. 5.65 is consistent with Eq. 5.47, by applying the curl.

(c) Check that Eq. 5.65 is consistent with Eq. 5.64, by applying the Laplacian.

Problem 5.29 Suppose you want to define a magnetic scalar potential U (Eq. 5.67)
in the vicinity of a current-carrying wire. First of all, you must stay away from the
wire itself (there ∇ × B �= 0); but that’s not enough. Show, by applying Ampère’s
law to a path that starts at a and circles the wire, returning to b (Fig. 5.47), that the
scalar potential cannot be single-valued (that is, U (a) �= U (b), even if they repre-
sent the same physical point). As an example, find the scalar potential for an infinite
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I

Amperian loop

a
b

FIGURE 5.47

straight wire. (To avoid a multivalued potential, you must restrict yourself to simply-
connected regions that remain on one side or the other of every wire, never allowing
you to go all the way around.)

Problem 5.30 Use the results of Ex. 5.11 to find the magnetic field inside a solid
sphere, of uniform charge density ρ and radius R, that is rotating at a constant
angular velocity ωωω.

Problem 5.31

(a) Complete the proof of Theorem 2, Sect. 1.6.2. That is, show that any diver-
genceless vector field F can be written as the curl of a vector potential A. What
you have to do is find Ax , Ay , and Az such that (i) ∂ Az/∂y − ∂ Ay/∂z = Fx ;
(ii) ∂ Ax/∂z − ∂ Az/∂x = Fy ; and (iii) ∂ Ay/∂x − ∂ Ax/∂y = Fz . Here’s one
way to do it: Pick Ax = 0, and solve (ii) and (iii) for Ay and Az . Note that
the “constants of integration” are themselves functions of y and z—they’re
constant only with respect to x . Now plug these expressions into (i), and use
the fact that ∇ · F = 0 to obtain

Ay =
∫ x

0
Fz(x ′, y, z) dx ′; Az =

∫ y

0
Fx (0, y′, z) dy′ −

∫ x

0
Fy(x ′, y, z) dx ′.

(b) By direct differentiation, check that the A you obtained in part (a) satisfies
∇ × A = F. Is A divergenceless? [This was a very asymmetrical construc-
tion, and it would be surprising if it were—although we know that there exists
a vector whose curl is F and whose divergence is zero.]

(c) As an example, let F = y x̂ + z ŷ + x ẑ. Calculate A, and confirm that
∇ × A = F. (For further discussion, see Prob. 5.53.)

5.4.2 Boundary Conditions

In Chapter 2, I drew a triangular diagram to summarize the relations among the
three fundamental quantities of electrostatics: the charge density ρ, the electric
field E, and the potential V . A similar figure can be constructed for magnetostatics
(Fig. 5.48), relating the current density J, the field B, and the potential A. There is
one “missing link” in the diagram: the equation for A in terms of B. It’s unlikely
you would ever need such a formula, but in case you are interested, see Probs. 5.52
and 5.53.
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Just as the electric field suffers a discontinuity at a surface charge, so the mag-
netic field is discontinuous at a surface current. Only this time it is the tangential
component that changes. For if we apply Eq. 5.50, in integral form,

∮
B · da = 0,

to a wafer-thin pillbox straddling the surface (Fig. 5.49), we get

B⊥
above = B⊥

below. (5.74)

As for the tangential components, an Amperian loop running perpendicular to the
current (Fig. 5.50) yields

∮
B · dl =

(
B‖

above − B‖
below

)
l = μ0 Ienc = μ0 Kl,

or

B‖
above − B‖

below = μ0 K . (5.75)

B⊥
above

B⊥
below

K

FIGURE 5.49
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B�
above

B�
below

K

l

FIGURE 5.50

Thus the component of B that is parallel to the surface but perpendicular to the
current is discontinuous in the amount μ0 K . A similar Amperian loop running
parallel to the current reveals that the parallel component is continuous. These
results can be summarized in a single formula:

Babove − Bbelow = μ0(K × n̂), (5.76)

where n̂ is a unit vector perpendicular to the surface, pointing “upward.”
Like the scalar potential in electrostatics, the vector potential is continuous

across any boundary:

Aabove = Abelow, (5.77)

for ∇ · A = 0 guarantees21 that the normal component is continuous; and
∇ × A = B, in the form

∮
A · dl =

∫
B · da = �,

means that the tangential components are continuous (the flux through an Am-
perian loop of vanishing thickness is zero). But the derivative of A inherits the
discontinuity of B:

∂Aabove

∂n
− ∂Abelow

∂n
= −μ0K. (5.78)

Problem 5.32

(a) Check Eq. 5.76 for the configuration in Ex. 5.9.

(b) Check Eqs. 5.77 and 5.78 for the configuration in Ex. 5.11.

Problem 5.33 Prove Eq. 5.78, using Eqs. 5.63, 5.76, and 5.77. [Suggestion: I’d set
up Cartesian coordinates at the surface, with z perpendicular to the surface and x
parallel to the current.]

21Note that Eqs. 5.77 and 5.78 presuppose that A is divergenceless.
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5.4.3 Multipole Expansion of the Vector Potential

If you want an approximate formula for the vector potential of a localized current
distribution, valid at distant points, a multipole expansion is in order. Remember:
the idea of a multipole expansion is to write the potential in the form of a power
series in 1/r , where r is the distance to the point in question (Fig. 5.51); if r is
sufficiently large, the series will be dominated by the lowest nonvanishing contri-
bution, and the higher terms can be ignored. As we found in Sect. 3.4.1 (Eq. 3.94),

1

r = 1√
r2 + (r ′)2 − 2rr ′ cos α

= 1

r

∞∑
n=0

(
r ′

r

)n

Pn(cos α), (5.79)

where α is the angle between r and r′. Accordingly, the vector potential of a
current loop can be written

A(r) = μ0 I

4π

∮
1

r dl′ = μ0 I

4π

∞∑
n=0

1

rn+1

∮
(r ′)n Pn(cos α) dl′, (5.80)

or, more explicitly:

A(r) = μ0 I

4π

[
1

r

∮
dl′ + 1

r2

∮
r ′ cos α dl′

+ 1

r3

∮
(r ′)2

(
3

2
cos2 α − 1

2

)
dl′ + · · ·

]
.

(5.81)

As in the multipole expansion of V , we call the first term (which goes like 1/r ) the
monopole term, the second (which goes like 1/r2) dipole, the third quadrupole,
and so on.

dr′  = dl′

I

rα

r

r′

O

FIGURE 5.51
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Now, the magnetic monopole term is always zero, for the integral is just the
total vector displacement around a closed loop:∮

dl′ = 0. (5.82)

This reflects the fact that there are no magnetic monopoles in nature (an assump-
tion contained in Maxwell’s equation ∇ · B = 0, on which the entire theory of
vector potential is predicated).

In the absence of any monopole contribution, the dominant term is the dipole
(except in the rare case where it, too, vanishes):

Adip(r) = μ0 I

4πr2

∮
r ′ cos α dl′ = μ0 I

4πr2

∮
(r̂ · r′) dl′. (5.83)

This integral can be rewritten in a more illuminating way if we invoke Eq. 1.108,
with c = r̂: ∮

(r̂ · r′) dl′ = −r̂ ×
∫

da′. (5.84)

Then

Adip(r) = μ0

4π

m × r̂
r2

, (5.85)

where m is the magnetic dipole moment:

m ≡ I
∫

da = I a. (5.86)

Here a is the “vector area” of the loop (Prob. 1.62); if the loop is flat, a is the
ordinary area enclosed, with the direction assigned by the usual right-hand rule
(fingers in the direction of the current).

Example 5.13. Find the magnetic dipole moment of the “bookend-shaped” loop
shown in Fig. 5.52. All sides have length w, and it carries a current I .

I

z

y

x

w

w

w

FIGURE 5.52
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Solution
This wire could be considered the superposition of two plane square loops
(Fig. 5.53). The “extra” sides (AB) cancel when the two are put together, since
the currents flow in opposite directions. The net magnetic dipole moment is

m = Iw2 ŷ + Iw2 ẑ;
its magnitude is

√
2Iw2, and it points along the 45◦ line z = y.

w

w

w w

A

A
I I

+
B

B

FIGURE 5.53

It is clear from Eq. 5.86 that the magnetic dipole moment is independent of
the choice of origin. You may remember that the electric dipole moment is in-
dependent of the origin only when the total charge vanishes (Sect. 3.4.3). Since
the magnetic monopole moment is always zero, it is not really surprising that the
magnetic dipole moment is always independent of origin.

Although the dipole term dominates the multipole expansion (unless m = 0)
and thus offers a good approximation to the true potential, it is not ordinarily the
exact potential; there will be quadrupole, octopole, and higher contributions. You
might ask, is it possible to devise a current distribution whose potential is “pure”
dipole—for which Eq. 5.85 is exact? Well, yes and no: like the electrical analog,
it can be done, but the model is a bit contrived. To begin with, you must take an
infinitesimally small loop at the origin, but then, in order to keep the dipole mo-
ment finite, you have to crank the current up to infinity, with the product m = I a
held fixed. In practice, the dipole potential is a suitable approximation whenever
the distance r greatly exceeds the size of the loop.

The magnetic field of a (perfect) dipole is easiest to calculate if we put m at
the origin and let it point in the z-direction (Fig. 5.54). According to Eq. 5.85, the
potential at point (r, θ, φ) is

r

m

θ

x

y

z

φ

FIGURE 5.54
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y

z

y

z

(a) Field of a "pure" dipole (b) Field of a "physical" dipole

FIGURE 5.55

Adip(r) = μ0

4π

m sin θ

r2
φ̂, (5.87)

and hence

Bdip(r) = ∇ × A = μ0m

4πr3
(2 cos θ r̂ + sin θ θ̂). (5.88)

Surprisingly, this is identical in structure to the field of an electric dipole
(Eq. 3.103)! (Up close, however, the field of a physical magnetic dipole—a
small current loop—looks quite different from the field of a physical electric
dipole—plus and minus charges a short distance apart. Compare Fig. 5.55 with
Fig. 3.37.)

Problem 5.34 Show that the magnetic field of a dipole can be written in coordinate-•
free form:

Bdip(r) = μ0

4π

1

r 3

[
3(m · r̂)r̂ − m

]
. (5.89)

Problem 5.35 A circular loop of wire, with radius R, lies in the xy plane (centered
at the origin) and carries a current I running counterclockwise as viewed from the
positive z axis.

(a) What is its magnetic dipole moment?

(b) What is the (approximate) magnetic field at points far from the origin?

(c) Show that, for points on the z axis, your answer is consistent with the exact field
(Ex. 5.6), when z � R.

Problem 5.36 Find the exact magnetic field a distance z above the center of a square
loop of side w, carrying a current I . Verify that it reduces to the field of a dipole,
with the appropriate dipole moment, when z � w.
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Problem 5.37

(a) A phonograph record of radius R, carrying a uniform surface charge σ , is rotat-
ing at constant angular velocity ω. Find its magnetic dipole moment.

(b) Find the magnetic dipole moment of the spinning spherical shell in Ex. 5.11.
Show that for points r > R the potential is that of a perfect dipole.

Problem 5.38 I worked out the multipole expansion for the vector potential of a
line current because that’s the most common type, and in some respects the easiest
to handle. For a volume current J:

(a) Write down the multipole expansion, analogous to Eq. 5.80.

(b) Write down the monopole potential, and prove that it vanishes.

(c) Using Eqs. 1.107 and 5.86, show that the dipole moment can be written

m = 1

2

∫
(r × J) dτ. (5.90)

More Problems on Chapter 5

Problem 5.39 Analyze the motion of a particle (charge q , mass m) in the magnetic
field of a long straight wire carrying a steady current I .

(a) Is its kinetic energy conserved?

(b) Find the force on the particle, in cylindrical coordinates, with I along the z axis.

(c) Obtain the equations of motion.

(d) Suppose ż is constant. Describe the motion.

Problem 5.40 It may have occurred to you that since parallel currents attract, the
current within a single wire should contract into a tiny concentrated stream along
the axis. Yet in practice the current typically distributes itself quite uniformly over
the wire. How do you account for this? If the positive charges (density ρ+) are
“nailed down,” and the negative charges (density ρ−) move at speed v (and none
of these depends on the distance from the axis), show that ρ− = −ρ+γ 2, where
γ ≡ 1/

√
1 − (v/c)2 and c2 = 1/μ0ε0. If the wire as a whole is neutral, where is the

compensating charge located?22 [Notice that for typical velocities (see Prob. 5.20),
the two charge densities are essentially unchanged by the current (since γ ≈ 1). In
plasmas, however, where the positive charges are also free to move, this so-called
pinch effect can be very significant.]

Problem 5.41 A current I flows to the right through a rectangular bar of conducting
material, in the presence of a uniform magnetic field B pointing out of the page
(Fig. 5.56).

(a) If the moving charges are positive, in which direction are they deflected by
the magnetic field? This deflection results in an accumulation of charge on the

22For further discussion, see D. C. Gabuzda, Am. J. Phys. 61, 360 (1993).
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upper and lower surfaces of the bar, which in turn produces an electric force to
counteract the magnetic one. Equilibrium occurs when the two exactly cancel.
(This phenomenon is known as the Hall effect.)

(b) Find the resulting potential difference (the Hall voltage) between the top and
bottom of the bar, in terms of B, v (the speed of the charges), and the relevant
dimensions of the bar.23

(c) How would your analysis change if the moving charges were negative? [The
Hall effect is the classic way of determining the sign of the mobile charge
carriers in a material.]

B

I I
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w

FIGURE 5.56

w

I

FIGURE 5.57

Problem 5.42 A plane wire loop of irregular shape is situated so that part of it is
in a uniform magnetic field B (in Fig. 5.57 the field occupies the shaded region,
and points perpendicular to the plane of the loop). The loop carries a current I .
Show that the net magnetic force on the loop is F = I Bw, where w is the chord
subtended. Generalize this result to the case where the magnetic field region itself
has an irregular shape. What is the direction of the force?

R

Field region

Particle trajectory

FIGURE 5.58

Problem 5.43 A circularly symmetrical magnetic field (B depends only on the dis-
tance from the axis), pointing perpendicular to the page, occupies the shaded region
in Fig. 5.58. If the total flux (

∫
B · da) is zero, show that a charged particle that

starts out at the center will emerge from the field region on a radial path (provided

23The potential within the bar makes an interesting boundary-value problem. See M. J. Moelter,
J. Evans, G. Elliot, and M. Jackson, Am. J. Phys. 66, 668 (1998).
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it escapes at all). On the reverse trajectory, a particle fired at the center from outside
will hit its target (if it has sufficient energy), though it may follow a weird route
getting there. [Hint: Calculate the total angular momentum acquired by the particle,
using the Lorentz force law.]

Problem 5.44 Calculate the magnetic force of attraction between the northern and
southern hemispheres of a spinning charged spherical shell (Ex. 5.11). [Answer:
(π/4)μ0σ

2ω2 R4.]

Problem 5.45 Consider the motion of a particle with mass m and electric charge qe!
in the field of a (hypothetical) stationary magnetic monopole qm at the origin:

B = μ0

4π

qm

r 2
r̂.

(a) Find the acceleration of qe, expressing your answer in terms of q, qm , m, r (the
position of the particle), and v (its velocity).

(b) Show that the speed v = |v| is a constant of the motion.

(c) Show that the vector quantity

Q ≡ m(r × v) − μ0qeqm

4π
r̂

is a constant of the motion. [Hint: differentiate it with respect to time, and
prove—using the equation of motion from (a)—that the derivative is zero.]

(d) Choosing spherical coordinates (r, θ, φ), with the polar (z) axis along Q,

(i) calculate Q · φ̂, and show that θ is a constant of the motion (so qe moves
on the surface of a cone—something Poincaré first discovered in 1896)24;

(ii) calculate Q · r̂, and show that the magnitude of Q is

Q = μ0

4π

∣∣∣ qeqm

cos θ

∣∣∣ ;

(iii) calculate Q · θ̂ , show that

dφ

dt
= k

r 2
,

and determine the constant k.

(e) By expressing v2 in spherical coordinates, obtain the equation for the trajectory,
in the form

dr

dφ
= f (r)

(that is: determine the function f (r)).

(f) Solve this equation for r(φ).

24In point of fact, the charge follows a geodesic on the cone. The original paper is H. Poincaré,
Comptes rendus de l’Academie des Sciences 123, 530 (1896); for a more modern treatment, see B.
Rossi and S. Olbert, Introduction to the Physics of Space (New York: McGraw-Hill, 1970).
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Problem 5.46 Use the Biot-Savart law (most conveniently in the form of Eq. 5.42!
appropriate to surface currents) to find the field inside and outside an infinitely long
solenoid of radius R, with n turns per unit length, carrying a steady current I .

R

I

R

I

dz = 0

z

FIGURE 5.59

Problem 5.47 The magnetic field on the axis of a circular current loop (Eq. 5.41)
is far from uniform (it falls off sharply with increasing z). You can produce a more
nearly uniform field by using two such loops a distance d apart (Fig. 5.59).

(a) Find the field (B) as a function of z, and show that ∂ B/∂z is zero at the point
midway between them (z = 0).

(b) If you pick d just right, the second derivative of B will also vanish at the mid-
point. This arrangement is known as a Helmholtz coil; it’s a convenient way
of producing relatively uniform fields in the laboratory. Determine d such that
∂2 B/∂z2 = 0 at the midpoint, and find the resulting magnetic field at the center.
[Answer: 8μ0 I/5

√
5R]

Problem 5.48 Use Eq. 5.41 to obtain the magnetic field on the axis of the rotating
disk in Prob. 5.37(a). Show that the dipole field (Eq. 5.88), with the dipole moment
you found in Prob. 5.37, is a good approximation if z � R.

Problem 5.49 Suppose you wanted to find the field of a circular loop (Ex. 5.6) at
a point r that is not directly above the center (Fig. 5.60). You might as well choose
your axes so that r lies in the yz plane at (0, y, z). The source point is (R cos φ′,
R sin φ′, 0), and φ′ runs from 0 to 2π . Set up the integrals25 from which you could
calculate Bx , By , and Bz , and evaluate Bx explicitly.

Problem 5.50 Magnetostatics treats the “source current” (the one that sets up the
field) and the “recipient current” (the one that experiences the force) so asymmet-
rically that it is by no means obvious that the magnetic force between two current
loops is consistent with Newton’s third law. Show, starting with the Biot-Savart law
(Eq. 5.34) and the Lorentz force law (Eq. 5.16), that the force on loop 2 due to
loop 1 (Fig. 5.61) can be written as

F2 = − μ0

4π
I1 I2

∮ ∮ r̂
r2

dl1 · dl2. (5.91)

25These are elliptic integrals—see R. H. Good, Eur. J. Phys. 22, 119 (2001).
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In this form, it is clear that F2 = −F1, since r̂ changes direction when the roles of
1 and 2 are interchanged. (If you seem to be getting an “extra” term, it will help to
note that dl2 · r̂ = dr.)

Problem 5.51 Consider a plane loop of wire that carries a steady current I ; we
want to calculate the magnetic field at a point in the plane. We might as well take
that point to be the origin (it could be inside or outside the loop). The shape of the
wire is given, in polar coordinates, by a specified function r(θ) (Fig. 5.62).

y

r
r̂

r̂

I

xθ

φ
φ

dθ

dl
dl

FIGURE 5.62

(a) Show that the magnitude of the field is26

B = μ0 I

4π

∮
dθ

r
. (5.92)

[Hint: Start with the Biot-Savart law; note that r = −r, and dl × r̂ points per-
pendicular to the plane; show that |dl × r̂| = dl sin φ = r dθ .]

(b) Test this formula by calculating the field at the center of a circular loop.

(c) The “lituus spiral” is defined by

r(θ) = a√
θ

, (0 < θ ≤ 2π)

(for some constant a). Sketch this figure, and complete the loop with a straight
segment along the x axis. What is the magnetic field at the origin?

26J. A. Miranda, Am. J. Phys. 68, 254 (2000).
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(d) For a conic section with focus at the origin,

r(θ) = p

1 + e cos θ
,

where p is the semilatus rectum (the y intercept) and e is the eccentricity (e = 0
for a circle, 0 < e < 1 for an ellipse, e = 1 for a parabola). Show that the field is

B = μ0 I

2p

regardless of the eccentricity.27

Problem 5.52

(a) One way to fill in the “missing link” in Fig. 5.48 is to exploit the analogy be-
tween the defining equations for A (viz. ∇ · A = 0, ∇ × A = B) and Maxwell’s
equations for B (viz. ∇ · B = 0, ∇ × B = μ0J). Evidently A depends on B in
exactly the same way that B depends on μ0J (to wit: the Biot-Savart law). Use
this observation to write down the formula for A in terms of B.

(b) The electrical analog to your result in (a) is

V (r) = − 1

4π

∫
E(r′) · r̂
r2

dτ ′.

Derive it, by exploiting the appropriate analogy.

Problem 5.53 Another way to fill in the “missing link” in Fig. 5.48 is to look for a!
magnetostatic analog to Eq. 2.21. The obvious candidate would be

A(r) =
∫ r

O
(B × dl).

(a) Test this formula for the simplest possible case—uniform B (use the origin as
your reference point). Is the result consistent with Prob. 5.25? You could cure
this problem by throwing in a factor of 1

2 , but the flaw in this equation runs
deeper.

(b) Show that
∫
(B × dl) is not independent of path, by calculating

∮
(B × dl)

around the rectangular loop shown in Fig. 5.63.

a b

w

I

FIGURE 5.63

27C. Christodoulides, Am. J. Phys. 77, 1195 (2009).
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As far as I know,28 the best one can do along these lines is the pair of equations

(i) V (r) = −r · ∫ 1
0 E(λr) dλ,

(ii) A(r) = −r × ∫ 1
0 λB(λr) dλ.

[Equation (i) amounts to selecting a radial path for the integral in Eq. 2.21;
equation (ii) constitutes a more “symmetrical” solution to Prob. 5.31.]

(c) Use (ii) to find the vector potential for uniform B.

(d) Use (ii) to find the vector potential of an infinite straight wire carrying a steady
current I . Does (ii) automatically satisfy ∇ · A = 0? [Answer: (μ0 I/2πs)
(z ŝ − s ẑ)]

Problem 5.54

(a) Construct the scalar potential U (r) for a “pure” magnetic dipole m.

(b) Construct a scalar potential for the spinning spherical shell (Ex. 5.11). [Hint:
for r > R this is a pure dipole field, as you can see by comparing Eqs. 5.69 and
5.87.]

(c) Try doing the same for the interior of a solid spinning sphere. [Hint: If you
solved Prob. 5.30, you already know the field; set it equal to −∇U , and solve
for U . What’s the trouble?]

Problem 5.55 Just as ∇ · B = 0 allows us to express B as the curl of a vector poten-
tial (B = ∇ × A), so ∇ · A = 0 permits us to write A itself as the curl of a “higher”
potential: A = ∇ × W. (And this hierarchy can be extended ad infinitum.)

(a) Find the general formula for W (as an integral over B), which holds when
B → 0 at ∞.

(b) Determine W for the case of a uniform magnetic field B. [Hint: see Prob. 5.25.]

(c) Find W inside and outside an infinite solenoid. [Hint: see Ex. 5.12.]

Problem 5.56 Prove the following uniqueness theorem: If the current density J is
specified throughout a volume V , and either the potential A or the magnetic field B
is specified on the surface S bounding V , then the magnetic field itself is uniquely
determined throughout V . [Hint: First use the divergence theorem to show that∫

{(∇ × U) · (∇ × V) − U · [∇ × (∇ × V)]} dτ =
∮

[U × (∇ × V)] · da,

for arbitrary vector functions U and V.]

Problem 5.57 A magnetic dipole m = −m0 ẑ is situated at the origin, in an other-
wise uniform magnetic field B = B0 ẑ. Show that there exists a spherical surface,
centered at the origin, through which no magnetic field lines pass. Find the radius
of this sphere, and sketch the field lines, inside and out.

28R. L. Bishop and S. I. Goldberg, Tensor Analysis on Manifolds, Section 4.5 (New York: Macmillan,
1968).
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Problem 5.58 A thin uniform donut, carrying charge Q and mass M , rotates about
its axis as shown in Fig. 5.64.

(a) Find the ratio of its magnetic dipole moment to its angular momentum. This is
called the gyromagnetic ratio (or magnetomechanical ratio).

(b) What is the gyromagnetic ratio for a uniform spinning sphere? [This requires
no new calculation; simply decompose the sphere into infinitesimal rings, and
apply the result of part (a).]

(c) According to quantum mechanics, the angular momentum of a spinning elec-
tron is 1

2 h̄, where h̄ is Planck’s constant. What, then, is the electron’s mag-
netic dipole moment, in A · m2? [This semiclassical value is actually off by a
factor of almost exactly 2. Dirac’s relativistic electron theory got the 2 right,
and Feynman, Schwinger, and Tomonaga later calculated tiny further correc-
tions. The determination of the electron’s magnetic dipole moment remains the
finest achievement of quantum electrodynamics, and exhibits perhaps the most
stunningly precise agreement between theory and experiment in all of physics.
Incidentally, the quantity (eh̄/2m), where e is the charge of the electron and m
is its mass, is called the Bohr magneton.]

z

FIGURE 5.64

Problem 5.59•
(a) Prove that the average magnetic field, over a sphere of radius R, due to steady

currents inside the sphere, is

Bave = μ0

4π

2m
R3

, (5.93)

where m is the total dipole moment of the sphere. Contrast the electrostatic
result, Eq. 3.105. [This is tough, so I’ll give you a start:

Bave = 1
4
3 π R3

∫
B dτ.

Write B as (∇ × A), and apply Prob. 1.61(b). Now put in Eq. 5.65, and do the
surface integral first, showing that∫

1

r da = 4

3
πr′

(see Fig. 5.65). Use Eq. 5.90, if you like.]

(b) Show that the average magnetic field due to steady currents outside the sphere
is the same as the field they produce at the center.
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r
da

dτr′

FIGURE 5.65

Problem 5.60 A uniformly charged solid sphere of radius R carries a total charge
Q, and is set spinning with angular velocity ω about the z axis.

(a) What is the magnetic dipole moment of the sphere?

(b) Find the average magnetic field within the sphere (see Prob. 5.59).

(c) Find the approximate vector potential at a point (r, θ ) where r � R.

(d) Find the exact potential at a point (r, θ ) outside the sphere, and check that it is
consistent with (c). [Hint: refer to Ex. 5.11.]

(e) Find the magnetic field at a point (r, θ ) inside the sphere (Prob. 5.30), and check
that it is consistent with (b).

Problem 5.61 Using Eq. 5.88, calculate the average magnetic field of a dipole over
a sphere of radius R centered at the origin. Do the angular integrals first. Compare
your answer with the general theorem in Prob. 5.59. Explain the discrepancy, and
indicate how Eq. 5.89 can be corrected to resolve the ambiguity at r = 0. (If you
get stuck, refer to Prob. 3.48.)

Evidently the true field of a magnetic dipole is29

Bdip(r) = μ0

4π

1

r 3

[
3(m · r̂)r̂ − m

] + 2μ0

3
mδ3(r). (5.94)

Compare the electrostatic analog, Eq. 3.106.

Problem 5.62 A thin glass rod of radius R and length L carries a uniform surface
charge σ . It is set spinning about its axis, at an angular velocity ω. Find the magnetic
field at a distance s � R from the axis, in the xy plane (Fig. 5.66). [Hint: treat it as
a stack of magnetic dipoles.] [Answer: μ0ωσ L R3/4[s2 + (L/2)2]3/2]

29The delta-function term is responsible for the hyperfine splitting in atomic spectra—see, for exam-
ple, D. J. Griffiths, Am. J. Phys. 50, 698 (1982).
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6 Magnetic Fields in Matter

6.1 MAGNETIZATION

6.1.1 Diamagnets, Paramagnets, Ferromagnets

If you ask the average person what “magnetism” is, you will probably be told
about refrigerator decorations, compass needles, and the North Pole—none of
which has any obvious connection with moving charges or current-carrying wires.
Yet all magnetic phenomena are due to electric charges in motion, and in fact, if
you could examine a piece of magnetic material on an atomic scale you would
find tiny currents: electrons orbiting around nuclei and spinning about their axes.
For macroscopic purposes, these current loops are so small that we may treat them
as magnetic dipoles. Ordinarily, they cancel each other out because of the random
orientation of the atoms. But when a magnetic field is applied, a net alignment of
these magnetic dipoles occurs, and the medium becomes magnetically polarized,
or magnetized.

Unlike electric polarization, which is almost always in the same direction as E,
some materials acquire a magnetization parallel to B (paramagnets) and some
opposite to B (diamagnets). A few substances (called ferromagnets, in defer-
ence to the most common example, iron) retain their magnetization even after the
external field has been removed—for these, the magnetization is not determined
by the present field but by the whole magnetic “history” of the object. Permanent
magnets made of iron are the most familiar examples of magnetism, but from a
theoretical point of view they are the most complicated; I’ll save ferromagnetism
for the end of the chapter, and begin with qualitative models of paramagnetism
and diamagnetism.

6.1.2 Torques and Forces on Magnetic Dipoles

A magnetic dipole experiences a torque in a magnetic field, just as an electric
dipole does in an electric field. Let’s calculate the torque on a rectangular current
loop in a uniform field B. (Since any current loop could be built up from infinites-
imal rectangles, with all the “internal” sides canceling, as indicated in Fig. 6.1,
there is no real loss of generality here; but if you prefer to start from scratch with
an arbitrary shape, see Prob. 6.2.) Center the loop at the origin, and tilt it an angle
θ from the z axis towards the y axis (Fig. 6.2). Let B point in the z direction. The
forces on the two sloping sides cancel (they tend to stretch the loop, but they don’t

266
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I

FIGURE 6.1

rotate it). The forces on the “horizontal” sides are likewise equal and opposite (so
the net force on the loop is zero), but they do generate a torque:

N = aF sin θ x̂.

The magnitude of the force on each of these segments is

F = I bB,

and therefore

N = I abB sin θ x̂ = m B sin θ x̂,

or

N = m × B, (6.1)

where m = I ab is the magnetic dipole moment of the loop. Equation 6.1 gives
the torque on any localized current distribution, in the presence of a uniform field;
in a nonuniform field it is the exact torque (about the center) for a perfect dipole
of infinitesimal size.
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Notice that Eq. 6.1 is identical in form to the electrical analog, Eq. 4.4:
N = p × E. In particular, the torque is again in such a direction as to line the
dipole up parallel to the field. It is this torque that accounts for paramagnetism.
Since every electron constitutes a magnetic dipole (picture it, if you wish, as a
tiny spinning sphere of charge), you might expect paramagnetism to be a univer-
sal phenomenon. Actually, quantum mechanics (specifically, the Pauli exclusion
principle) tends to lock the electrons within a given atom together in pairs with
opposing spins,1 and this effectively neutralizes the torque on the combination.
As a result, paramagnetism most often occurs in atoms or molecules with an
odd number of electrons, where the “extra” unpaired member is subject to the
magnetic torque. Even here, the alignment is far from complete, since random
thermal collisions tend to destroy the order.

In a uniform field, the net force on a current loop is zero:

F = I
∮

(dl × B) = I

(∮
dl

)
× B = 0;

the constant B comes outside the integral, and the net displacement
∮

dl around a
closed loop vanishes. In a nonuniform field this is no longer the case. For example,
suppose a circular wire ring of radius R, carrying a current I , is suspended above
a short solenoid in the “fringing” region (Fig. 6.3). Here B has a radial component,
and there is a net downward force on the loop (Fig. 6.4):

F = 2π I RB cos θ. (6.2)

For an infinitesimal loop, with dipole moment m, in a field B, the force is

F = ∇(m · B) (6.3)
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1This is not always true for the outermost electrons in unfilled shells.
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(see Prob. 6.4). Once again the magnetic formula is identical to its electrical
“twin,” if we write the latter in the form F = ∇(p · E). (See footnote to Eq. 4.5.)

If you’re starting to get a sense of déjà vu, perhaps you will have more respect
for those early physicists who thought magnetic dipoles consisted of positive and
negative magnetic “charges” (north and south “poles,” they called them), sepa-
rated by a small distance, just like electric dipoles (Fig. 6.5(a)). They wrote down
a “Coulomb’s law” for the attraction and repulsion of these poles, and devel-
oped the whole of magnetostatics in exact analogy to electrostatics. It’s not a bad
model, for many purposes—it gives the correct field of a dipole (at least, away
from the origin), the right torque on a dipole (at least, on a stationary dipole),
and the proper force on a dipole (at least, in the absence of external currents). But
it’s bad physics, because there’s no such thing as a single magnetic north pole or
south pole. If you break a bar magnet in half, you don’t get a north pole in one
hand and a south pole in the other; you get two complete magnets. Magnetism
is not due to magnetic monopoles, but rather to moving electric charges; mag-
netic dipoles are tiny current loops (Fig. 6.5(c)), and it’s an extraordinary thing,
really, that the formulas involving m bear any resemblance to the corresponding
formulas for p. Sometimes it is easier to think in terms of the “Gilbert” model of
a magnetic dipole (separated monopoles), instead of the physically correct “Am-
père” model (current loop). Indeed, this picture occasionally offers a quick and
clever solution to an otherwise cumbersome problem (you just copy the corre-
sponding result from electrostatics, changing p to m, 1/ε0 to μ0, and E to B). But
whenever the close-up features of the dipole come into play, the two models can
yield strikingly different answers. My advice is to use the Gilbert model, if you
like, to get an intuitive “feel” for a problem, but never rely on it for quantitative
results.

m
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(a) Magnetic dipole
(Gilbert model)

p

+

−

(b) Electric dipole

m

I

(c) Magnetic dipole
(Ampère model)

FIGURE 6.5

Problem 6.1 Calculate the torque exerted on the square loop shown in Fig. 6.6, due
to the circular loop (assume r is much larger than a or b). If the square loop is free
to rotate, what will its equilibrium orientation be?
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FIGURE 6.6

Problem 6.2 Starting from the Lorentz force law, in the form of Eq. 5.16, show that
the torque on any steady current distribution (not just a square loop) in a uniform
field B is m × B.

Problem 6.3 Find the force of attraction between two magnetic dipoles, m1 and
m2, oriented as shown in Fig. 6.7, a distance r apart, (a) using Eq. 6.2, and (b) using
Eq. 6.3.

r

m2m1

FIGURE 6.7
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Problem 6.4 Derive Eq. 6.3. [Here’s one way to do it: Assume the dipole is an in-
finitesimal square, of side ε (if it’s not, chop it up into squares, and apply the argu-
ment to each one). Choose axes as shown in Fig. 6.8, and calculate F = I

∫
(dl × B)

along each of the four sides. Expand B in a Taylor series—on the right side, for in-
stance,

B = B(0, ε, z) ∼= B(0, 0, z) + ε
∂B
∂y

∣∣∣∣
(0,0,z)

.

For a more sophisticated method, see Prob. 6.22.]

Problem 6.5 A uniform current density J = J0 ẑ fills a slab straddling the yz plane,
from x = −a to x = +a. A magnetic dipole m = m0 x̂ is situated at the origin.

(a) Find the force on the dipole, using Eq. 6.3.

(b) Do the same for a dipole pointing in the y direction: m = m0ŷ.

(c) In the electrostatic case, the expressions F = ∇(p · E) and F = (p · ∇)E are
equivalent (prove it), but this is not the case for the magnetic analogs (explain
why). As an example, calculate (m · ∇)B for the configurations in (a) and (b).
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6.1.3 Effect of a Magnetic Field on Atomic Orbits

Electrons not only spin; they also revolve around the nucleus—for simplicity, let’s
assume the orbit is a circle of radius R (Fig. 6.9). Although technically this orbital
motion does not constitute a steady current, in practice the period T = 2π R/v is
so short that unless you blink awfully fast, it’s going to look like a steady current:

I = −e

T
= − ev

2π R
.

(The minus sign accounts for the negative charge of the electron.) Accordingly,
the orbital dipole moment (Iπ R2) is

m = −1

2
evR ẑ. (6.4)

Like any other magnetic dipole, this one is subject to a torque (m × B) when
you turn on a magnetic field. But it’s a lot harder to tilt the entire orbit than it is
the spin, so the orbital contribution to paramagnetism is small. There is, however,
a more significant effect on the orbital motion: The electron speeds up or slows
down, depending on the orientation of B. For whereas the centripetal acceleration
v2/R is ordinarily sustained by electrical forces alone,2

1

4πε0

e2

R2
= me

v2

R
, (6.5)

in the presence of a magnetic field there is an additional force, −e(v × B). For
the sake of argument, let’s say that B is perpendicular to the plane of the orbit, as
shown in Fig. 6.10; then

1

4πε0

e2

R2
+ ev̄B = me

v̄2

R
. (6.6)

Under these conditions, the new speed v̄ is greater than v:

ev̄B = me

R
(v̄2 − v2) = me

R
(v̄ + v)(v̄ − v),

v

z

m

R −e

FIGURE 6.9

2To avoid confusion with the magnetic dipole moment m, I’ll write the electron mass with
subscript: me .
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FIGURE 6.10

or, assuming the change �v = v̄ − v is small,

�v = eRB

2me
. (6.7)

When B is turned on, then, the electron speeds up.3

A change in orbital speed means a change in the dipole moment (Eq. 6.4):

�m = −1

2
e(�v)R ẑ = −e2 R2

4me
B. (6.8)

Notice that the change in m is opposite to the direction of B. (An electron circling
the other way would have a dipole moment pointing upward, but such an orbit
would be slowed down by the field, so the change is still opposite to B.) Ordi-
narily, the electron orbits are randomly oriented, and the orbital dipole moments
cancel out. But in the presence of a magnetic field, each atom picks up a little
“extra” dipole moment, and these increments are all antiparallel to the field. This
is the mechanism responsible for diamagnetism. It is a universal phenomenon,
affecting all atoms. However, it is typically much weaker than paramagnetism,
and is therefore observed mainly in atoms with even numbers of electrons, where
paramagnetism is usually absent.

In deriving Eq. 6.8, I assumed that the orbit remains circular, with its original
radius R. I cannot offer a justification for this at the present stage. If the atom
is stationary while the field is turned on, then my assumption can be proved—
this is not magnetostatics, however, and the details will have to await Chapter 7
(see Prob. 7.52). If the atom is moved into the field, the situation is enormously
more complicated. But never mind—I’m only trying to give you a qualitative
account of diamagnetism. Assume, if you prefer, that the velocity remains the
same while the radius changes—the formula (Eq. 6.8) is altered (by a factor of 2),
but the qualitative conclusion is unaffected. The truth is that this classical model is
fundamentally flawed (diamagnetism is really a quantum phenomenon), so there’s

3I said (Eq. 5.11) that magnetic fields do no work, and are incapable of speeding a particle up. I stand
by that. However, as we shall see in Chapter 7, a changing magnetic field induces an electric field, and
it is the latter that accelerates the electrons in this instance.



6.1 Magnetization 273

not much point in refining the details.4 What is important is the empirical fact
that in diamagnetic materials the induced dipole moments point opposite to the
magnetic field.

6.1.4 Magnetization

In the presence of a magnetic field, matter becomes magnetized; that is, upon
microscopic examination, it will be found to contain many tiny dipoles, with a net
alignment along some direction. We have discussed two mechanisms that account
for this magnetic polarization: (1) paramagnetism (the dipoles associated with the
spins of unpaired electrons experience a torque tending to line them up parallel
to the field) and (2) diamagnetism (the orbital speed of the electrons is altered in
such a way as to change the orbital dipole moment in a direction opposite to the
field). Whatever the cause, we describe the state of magnetic polarization by the
vector quantity

M ≡ magnetic dipole moment per unit volume. (6.9)

M is called the magnetization; it plays a role analogous to the polarization
P in electrostatics. In the following section, we will not worry about how the
magnetization got there—it could be paramagnetism, diamagnetism, or even
ferromagnetism—we shall take M as given, and calculate the field this magneti-
zation itself produces.

Incidentally, it may have surprised you to learn that materials other than the
famous ferromagnetic trio (iron, nickel, and cobalt) are affected by a magnetic
field at all. You cannot, of course, pick up a piece of wood or aluminum with a
magnet. The reason is that diamagnetism and paramagnetism are extremely weak:
It takes a delicate experiment and a powerful magnet to detect them at all. If you
were to suspend a piece of paramagnetic material above a solenoid, as in Fig. 6.3,
the induced magnetization would be upward, and hence the force downward. By
contrast, the magnetization of a diamagnetic object would be downward and the
force upward. In general, when a sample is placed in a region of nonuniform field,
the paramagnet is attracted into the field, whereas the diamagnet is repelled away.
But the actual forces are pitifully weak—in a typical experimental arrangement
the force on a comparable sample of iron would be 104 or 105 times as great.
That’s why it was reasonable for us to calculate the field inside a piece of copper
wire, say, in Chapter 5, without worrying about the effects of magnetization.5

4S. L. O’Dell and R. K. P. Zia, Am. J. Phys. 54, 32, (1986); R. Peierls, Surprises in Theoretical Physics,
Section 4.3 (Princeton, N.J.: Princeton University Press, 1979); R. P. Feynman, R. B. Leighton, and
M. Sands, The Feynman Lectures on Physics, Vol. 2, Sec. 34–36 (New York: Addison-Wesley, 1966).
5In 1997 Andre Geim managed to levitate a live frog (diamagnetic) for 30 minutes; he was awarded the
2000 Ig Nobel prize for this achievement, and later (2010) the Nobel prize for research on graphene.
See M. V. Berry and A. K. Geim, Eur. J. Phys. 18, 307 (1997) and Geim, Physics Today, September
1998, p. 36.
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Problem 6.6 Of the following materials, which would you expect to be paramag-
netic and which diamagnetic: aluminum, copper, copper chloride (CuCl2), carbon,
lead, nitrogen (N2), salt (NaCl), sodium, sulfur, water? (Actually, copper is slightly
diamagnetic; otherwise they’re all what you’d expect.)

6.2 THE FIELD OF A MAGNETIZED OBJECT

6.2.1 Bound Currents

Suppose we have a piece of magnetized material; the magnetic dipole moment per
unit volume, M, is given. What field does this object produce? Well, the vector
potential of a single dipole m is given by Eq. 5.85:

A(r) = μ0

4π

m × r̂
r2 . (6.10)

In the magnetized object, each volume element dτ ′ carries a dipole moment
M dτ ′, so the total vector potential is (Fig. 6.11)

A(r) = μ0

4π

∫
M(r′) × r̂

r2 dτ ′. (6.11)

That does it, in principle. But, as in the electrical case (Sect. 4.2.1), the integral
can be cast in a more illuminating form by exploiting the identity

∇′ 1
r = r̂

r2 .

With this,

A(r) = μ0

4π

∫ [
M(r′) ×

(
∇′ 1
r

)]
dτ ′.

Integrating by parts, using product rule 7, gives

A(r) = μ0

4π

{∫
1

r [∇
′ × M(r′)] dτ ′ −

∫
∇′ ×

[
M(r′)
r

]
dτ ′

}
.

m

r

dτ′

FIGURE 6.11
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Problem 1.61(b) invites us to express the latter as a surface integral,

A(r) = μ0

4π

∫
1

r [∇
′ × M(r′)] dτ ′ + μ0

4π

∮
1

r [M(r′) × da′]. (6.12)

The first term looks just like the potential of a volume current,

Jb = ∇ × M, (6.13)

while the second looks like the potential of a surface current,

Kb = M × n̂, (6.14)

where n̂ is the normal unit vector. With these definitions,

A(r) = μ0

4π

∫
V

Jb(r′)
r dτ ′ + μ0

4π

∮
S

Kb(r′)
r da′. (6.15)

What this means is that the potential (and hence also the field) of a magnetized
object is the same as would be produced by a volume current Jb = ∇ × M
throughout the material, plus a surface current Kb = M × n̂, on the boundary.
Instead of integrating the contributions of all the infinitesimal dipoles, using
Eq. 6.11, we first determine the bound currents, and then find the field they
produce, in the same way we would calculate the field of any other volume and
surface currents. Notice the striking parallel with the electrical case: there the field
of a polarized object was the same as that of a bound volume charge ρb = −∇ · P
plus a bound surface charge σb = P · n̂.

Example 6.1. Find the magnetic field of a uniformly magnetized sphere.

Solution
Choosing the z axis along the direction of M (Fig. 6.12), we have

Jb = ∇ × M = 0, Kb = M × n̂ = M sin θ φ̂.

M

r

y

z

x

θ

φ

FIGURE 6.12
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Now, a rotating spherical shell, of uniform surface charge σ , corresponds to a
surface current density

K = σv = σωR sin θ φ̂.

It follows, therefore, that the field of a uniformly magnetized sphere is identi-
cal to the field of a spinning spherical shell, with the identification σ Rωωω → M.
Referring back to Ex. 5.11, I conclude that

B = 2

3
μ0M, (6.16)

inside the sphere, while the field outside is the same as that of a perfect dipole,

m = 4

3
π R3M.

Notice that the internal field is uniform, like the electric field inside a uniformly
polarized sphere (Eq. 4.14), although the actual formulas for the two cases are
curiously different

(
2
3 in place of − 1

3

)
.6 The external fields are also analogous:

pure dipole in both instances.

Problem 6.7 An infinitely long circular cylinder carries a uniform magnetization
M parallel to its axis. Find the magnetic field (due to M) inside and outside the
cylinder.

Problem 6.8 A long circular cylinder of radius R carries a magnetization M =
ks2 φ̂, where k is a constant, s is the distance from the axis, and φ̂ is the usual
azimuthal unit vector (Fig. 6.13). Find the magnetic field due to M, for points inside
and outside the cylinder.

z
R

y

s
φ

x

FIGURE 6.13

w

M

a

a

FIGURE 6.14

6It is no accident that the same factors appear in the “contact” term for the fields of electric and
magnetic dipoles (Eqs. 3.106 and 5.94). In fact, one good way to model a perfect dipole is to take the
limit (R → 0) of a polarized/magnetized sphere.



6.2 The Field of a Magnetized Object 277

Problem 6.9 A short circular cylinder of radius a and length L carries a “frozen-in”
uniform magnetization M parallel to its axis. Find the bound current, and sketch the
magnetic field of the cylinder. (Make three sketches: one for L � a, one for L � a,
and one for L ≈ a.) Compare this bar magnet with the bar electret of Prob. 4.11.

Problem 6.10 An iron rod of length L and square cross section (side a) is given
a uniform longitudinal magnetization M, and then bent around into a circle with a
narrow gap (width w), as shown in Fig. 6.14. Find the magnetic field at the center
of the gap, assuming w � a � L . [Hint: treat it as the superposition of a complete
torus plus a square loop with reversed current.]

6.2.2 Physical Interpretation of Bound Currents

In the last section, we found that the field of a magnetized object is identical to the
field that would be produced by a certain distribution of “bound” currents, Jb and
Kb. I want to show you how these bound currents arise physically. This will be a
heuristic argument—the rigorous derivation has already been given. Figure 6.15
depicts a thin slab of uniformly magnetized material, with the dipoles represented
by tiny current loops. Notice that all the “internal” currents cancel: every time
there is one going to the right, a contiguous one is going to the left. However, at
the edge there is no adjacent loop to do the canceling. The whole thing, then, is
equivalent to a single ribbon of current I flowing around the boundary (Fig. 6.16).

What is this current, in terms of M? Say that each of the tiny loops has area a
and thickness t (Fig. 6.17). In terms of the magnetization M , its dipole moment

t

I

I
I I

I
I

M

FIGURE 6.15

M

n

I

I

FIGURE 6.16
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M

I
t

a

FIGURE 6.17

is m = Mat . In terms of the circulating current I , however, m = I a. Therefore
I = Mt , so the surface current is Kb = I/t = M . Using the outward-drawn unit
vector n̂ (Fig. 6.16), the direction of Kb is conveniently indicated by the cross
product:

Kb = M × n̂.

(This expression also records the fact that there is no current on the top or bottom
surface of the slab; here M is parallel to n̂, so the cross product vanishes.)

This bound surface current is exactly what we obtained in Sect. 6.2.1. It is a
peculiar kind of current, in the sense that no single charge makes the whole trip—
on the contrary, each charge moves only in a tiny little loop within a single atom.
Nevertheless, the net effect is a macroscopic current flowing over the surface of
the magnetized object. We call it a “bound” current to remind ourselves that every
charge is attached to a particular atom, but it’s a perfectly genuine current, and it
produces a magnetic field in the same way any other current does.

When the magnetization is nonuniform, the internal currents no longer cancel.
Figure 6.18(a) shows two adjacent chunks of magnetized material, with a larger
arrow on the one to the right suggesting greater magnetization at that point. On
the surface where they join, there is a net current in the x direction, given by

Ix = [Mz(y + dy) − Mz(y)] dz = ∂ Mz

∂y
dy dz.

The corresponding volume current density is therefore

(Jb)x = ∂ Mz

∂y
.

x

y

z Mz(y + dy)        

dy

Mz(y)

(a)

dz

x

y

z

dy

My(z + dz)

My(z)

(b)

dz

FIGURE 6.18
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By the same token, a nonuniform magnetization in the y direction would con-
tribute an amount −∂ My/∂z (Fig. 6.18(b)), so

(Jb)x = ∂ Mz

∂y
− ∂ My

∂z
.

In general, then,

Jb = ∇ × M,

consistent, again, with the result of Sect. 6.2.1.
Incidentally, like any other steady current, Jb should obey the conservation law

5.33:
∇ · Jb = 0.

Does it? Yes, for the divergence of a curl is always zero.

6.2.3 The Magnetic Field Inside Matter

Like the electric field, the actual microscopic magnetic field inside matter fluc-
tuates wildly from point to point and instant to instant. When we speak of “the”
magnetic field in matter, we mean the macroscopic field: the average over regions
large enough to contain many atoms. (The magnetization M is “smoothed out” in
the same sense.) It is this macroscopic field that one obtains when the methods of
Sect. 6.2.1 are applied to points inside magnetized material, as you can prove for
yourself in the following problem.

Problem 6.11 In Sect, 6.2.1, we began with the potential of a perfect dipole
(Eq. 6.10), whereas in fact we are dealing with physical dipoles. Show, by the
method of Sect. 4.2.3, that we nonetheless get the correct macroscopic field.

6.3 THE AUXILIARY FIELD H

6.3.1 Ampère’s Law in Magnetized Materials

In Sect. 6.2, we found that the effect of magnetization is to establish bound cur-
rents Jb = ∇ × M within the material and Kb = M × n̂ on the surface. The field
due to magnetization of the medium is just the field produced by these bound cur-
rents. We are now ready to put everything together: the field attributable to bound
currents, plus the field due to everything else—which I shall call the free current.
The free current might flow through wires imbedded in the magnetized substance
or, if the latter is a conductor, through the material itself. In any event, the total
current can be written as

J = Jb + J f . (6.17)

There is no new physics in Eq. 6.17; it is simply a convenience to separate the
current into these two parts, because they got there by quite different means: the
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free current is there because somebody hooked up a wire to a battery—it involves
actual transport of charge; the bound current is there because of magnetization—it
results from the conspiracy of many aligned atomic dipoles.

In view of Eqs. 6.13 and 6.17, Ampère’s law can be written

1

μ0
(∇ × B) = J = J f + Jb = J f + (∇ × M),

or, collecting together the two curls:

∇ ×
(

1

μ0
B − M

)
= J f .

The quantity in parentheses is designated by the letter H:

H ≡ 1

μ0
B − M. (6.18)

In terms of H, then, Ampère’s law reads

∇ × H = J f , (6.19)

or, in integral form, ∮
H · dl = I fenc , (6.20)

where I fenc is the total free current passing through the Amperian loop.
H plays a role in magnetostatics analogous to D in electrostatics: Just as D

allowed us to write Gauss’s law in terms of the free charge alone, H permits us to
express Ampère’s law in terms of the free current alone—and free current is what
we control directly. Bound current, like bound charge, comes along for the ride—
the material gets magnetized, and this results in bound currents; we cannot turn
them on or off independently, as we can free currents. In applying Eq. 6.20, all
we need to worry about is the free current, which we know about because we put
it there. In particular, when symmetry permits, we can calculate H immediately
from Eq. 6.20 by the usual Ampère’s law methods. (For example, Probs. 6.7 and
6.8 can be done in one line by noting that H = 0.)

Example 6.2. A long copper rod of radius R carries a uniformly distributed
(free) current I (Fig. 6.19). Find H inside and outside the rod.

Solution
Copper is weakly diamagnetic, so the dipoles will line up opposite to the field.
This results in a bound current running antiparallel to I , within the wire, and
parallel to I along the surface (Fig. 6.20). Just how great these bound currents will
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Amperian loop
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R
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FIGURE 6.20

be we are not yet in a position to say—but in order to calculate H, it is sufficient
to realize that all the currents are longitudinal, so B, M, and therefore also H, are
circumferential. Applying Eq. 6.20 to an Amperian loop of radius s < R,

H(2πs) = I fenc = I
πs2

π R2
,

so, inside the wire,

H = I

2π R2
s φ̂ (s ≤ R). (6.21)

Outside the wire

H = I

2πs
φ̂ (s ≥ R). (6.22)

In the latter region (as always, in empty space) M = 0, so

B = μ0H = μ0 I

2πs
φ̂ (s ≥ R),

the same as for a nonmagnetized wire (Ex. 5.7). Inside the wire B cannot be
determined at this stage, since we have no way of knowing M (though in practice
the magnetization in copper is so slight that for most purposes we can ignore it
altogether).

As it turns out, H is a more useful quantity than D. In the laboratory, you
will frequently hear people talking about H (more often even than B), but you
will never hear anyone speak of D (only E). The reason is this: To build an
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electromagnet you run a certain (free) current through a coil. The current is the
thing you read on the dial, and this determines H (or at any rate, the line in-
tegral of H); B depends on the specific materials you used and even, if iron is
present, on the history of your magnet. On the other hand, if you want to set up
an electric field, you do not plaster a known free charge on the plates of a par-
allel plate capacitor; rather, you connect them to a battery of known voltage. It’s
the potential difference you read on your dial, and that determines E (or rather,
the line integral of E); D depends on the details of the dielectric you’re using. If
it were easy to measure charge, and hard to measure potential, then you’d find
experimentalists talking about D instead of E. So the relative familiarity of H,
as contrasted with D, derives from purely practical considerations; theoretically,
they’re on an equal footing.

Many authors call H, not B, the “magnetic field.” Then they have to invent a
new word for B: the “flux density,” or magnetic “induction” (an absurd choice,
since that term already has at least two other meanings in electrodynamics). Any-
way, B is indisputably the fundamental quantity, so I shall continue to call it the
“magnetic field,” as everyone does in the spoken language. H has no sensible
name: just call it “H.”7

Problem 6.12 An infinitely long cylinder, of radius R, carries a “frozen-in” magne-
tization, parallel to the axis,

M = ks ẑ,

where k is a constant and s is the distance from the axis; there is no free current
anywhere. Find the magnetic field inside and outside the cylinder by two different
methods:

(a) As in Sect. 6.2, locate all the bound currents, and calculate the field they
produce.

(b) Use Ampère’s law (in the form of Eq. 6.20) to find H, and then get B from
Eq. 6.18. (Notice that the second method is much faster, and avoids any explicit
reference to the bound currents.)

Problem 6.13 Suppose the field inside a large piece of magnetic material is B0, so
that H0 = (1/μ0)B0 − M, where M is a “frozen-in” magnetization.

(a) Now a small spherical cavity is hollowed out of the material (Fig. 6.21). Find
the field at the center of the cavity, in terms of B0 and M. Also find H at the
center of the cavity, in terms of H0 and M.

(b) Do the same for a long needle-shaped cavity running parallel to M.

(c) Do the same for a thin wafer-shaped cavity perpendicular to M.

7For those who disagree, I quote A. Sommerfeld’s Electrodynamics (New York: Academic Press,
1952), p. 45: “The unhappy term ‘magnetic field’ for H should be avoided as far as possible. It seems
to us that this term has led into error none less than Maxwell himself . . . ”
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(a) Sphere (b) Needle (c) Wafer

M

FIGURE 6.21

Assume the cavities are small enough so M, B0, and H0 are essentially constant.
Compare Prob. 4.16. [Hint: Carving out a cavity is the same as superimposing an
object of the same shape but opposite magnetization.]

6.3.2 A Deceptive Parallel

Equation 6.19 looks just like Ampère’s original law (Eq. 5.56), except that the
total current is replaced by the free current, and B is replaced by μ0H. As in the
case of D, however, I must warn you against reading too much into this corre-
spondence. It does not say that μ0H is “just like B, only its source is J f instead of
J.” For the curl alone does not determine a vector field—you must also know the
divergence. And whereas ∇ · B = 0, the divergence of H is not, in general, zero.
In fact, from Eq. 6.18

∇ · H = −∇ · M. (6.23)

Only when the divergence of M vanishes is the parallel between B and μ0H
faithful.

If you think I’m being pedantic, consider the example of the bar magnet—a
short cylinder of iron that carries a permanent uniform magnetization M parallel
to its axis. (See Probs. 6.9 and 6.14.) In this case there is no free current any-
where, and a naïve application of Eq. 6.20 might lead you to suppose that H = 0,
and hence that B = μ0M inside the magnet and B = 0 outside, which is non-
sense. It is quite true that the curl of H vanishes everywhere, but the divergence
does not. (Can you see where ∇ · M �= 0?) Advice: When you are asked to find
B or H in a problem involving magnetic materials, first look for symmetry. If the
problem exhibits cylindrical, plane, solenoidal, or toroidal symmetry, then you
can get H directly from Eq. 6.20 by the usual Ampère’s law methods. (Evidently,
in such cases ∇ · M is automatically zero, since the free current alone determines
the answer.) If the requisite symmetry is absent, you’ll have to think of another
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approach, and in particular you must not assume that H is zero just because there
is no free current in sight.

6.3.3 Boundary Conditions

The magnetostatic boundary conditions of Sect. 5.4.2 can be rewritten in terms of
H and the free current. From Eq. 6.23 it follows that

H⊥
above − H⊥

below = −(M⊥
above − M⊥

below), (6.24)

while Eq. 6.19 says

H‖
above − H‖

below = K f × n̂. (6.25)

In the presence of materials, these are sometimes more useful than the correspond-
ing boundary conditions on B (Eqs. 5.74 and 5.76):

B⊥
above − B⊥

below = 0, (6.26)

and

B‖
above − B‖

below = μ0(K × n̂). (6.27)

You might want to check them, for Ex. 6.2 or Prob. 6.14.

Problem 6.14 For the bar magnet of Prob. 6.9, make careful sketches of M, B, and
H, assuming L is about 2a. Compare Prob. 4.17.

Problem 6.15 If J f = 0 everywhere, the curl of H vanishes (Eq. 6.19), and we can
express H as the gradient of a scalar potential W :

H = −∇W.

According to Eq. 6.23, then,

∇2W = (∇ · M),

so W obeys Poisson’s equation, with ∇ · M as the “source.” This opens up all the
machinery of Chapter 3. As an example, find the field inside a uniformly magne-
tized sphere (Ex. 6.1) by separation of variables. [Hint: ∇ · M = 0 everywhere ex-
cept at the surface (r = R), so W satisfies Laplace’s equation in the regions r < R
and r > R; use Eq. 3.65, and from Eq. 6.24 figure out the appropriate boundary
condition on W .]

6.4 LINEAR AND NONLINEAR MEDIA

6.4.1 Magnetic Susceptibility and Permeability

In paramagnetic and diamagnetic materials, the magnetization is sustained by the
field; when B is removed, M disappears. In fact, for most substances the mag-
netization is proportional to the field, provided the field is not too strong. For
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notational consistency with the electrical case (Eq. 4.30), I should express the
proportionality thus:

M = 1

μ0
χmB (incorrect!). (6.28)

But custom dictates that it be written in terms of H, instead of B:

M = χmH. (6.29)

The constant of proportionality χm is called the magnetic susceptibility; it is a
dimensionless quantity that varies from one substance to another—positive for
paramagnets and negative for diamagnets. Typical values are around 10−5 (see
Table 6.1).

Materials that obey Eq. 6.29 are called linear media. In view of Eq. 6.18,

B = μ0(H + M) = μ0(1 + χm)H, (6.30)

for linear media. Thus B is also proportional to H:8

B = μH, (6.31)

where

μ ≡ μ0(1 + χm). (6.32)

μ is called the permeability of the material.9 In a vacuum, where there is no
matter to magnetize, the susceptibility χm vanishes, and the permeability is μ0.
That’s why μ0 is called the permeability of free space.

Material Susceptibility Material Susceptibility

Diamagnetic: Paramagnetic:
Bismuth −1.7 × 10−4 Oxygen (O2) 1.7 × 10−6

Gold −3.4 × 10−5 Sodium 8.5 × 10−6

Silver −2.4 × 10−5 Aluminum 2.2 × 10−5

Copper −9.7 × 10−6 Tungsten 7.0 × 10−5

Water −9.0 × 10−6 Platinum 2.7 × 10−4

Carbon Dioxide −1.1 × 10−8 Liquid Oxygen
(−200◦ C)

3.9 × 10−3

Hydrogen (H2) −2.1 × 10−9 Gadolinium 4.8 × 10−1

TABLE 6.1 Magnetic Susceptibilities (unless otherwise specified, values are for 1 atm,
20◦ C). Data from Handbook of Chemistry and Physics, 91st ed. (Boca Raton: CRC Press,
Inc., 2010) and other references.

8Physically, therefore, Eq. 6.28 would say exactly the same as Eq. 6.29, only the constant χm would
have a different value. Equation 6.29 is a little more convenient, because experimentalists find it
handier to work with H than B.
9If you factor out μ0, what’s left is called the relative permeability: μr ≡ 1 + χm = μ/μ0. By the
way, formulas for H in terms of B (Eq. 6.31, in the case of linear media) are called constitutive
relations, just like those for D in terms of E.
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Example 6.3. An infinite solenoid (n turns per unit length, current I ) is filled
with linear material of susceptibility χm . Find the magnetic field inside the
solenoid.

φ

z

FIGURE 6.22

Solution
Since B is due in part to bound currents (which we don’t yet know), we cannot
compute it directly. However, this is one of those symmetrical cases in which we
can get H from the free current alone, using Ampère’s law in the form of Eq. 6.20:

H = nI ẑ

(Fig. 6.22). According to Eq. 6.31, then,

B = μ0(1 + χm)nI ẑ.

If the medium is paramagnetic, the field is slightly enhanced; if it’s diamagnetic,
the field is somewhat reduced. This reflects the fact that the bound surface current

Kb = M × n̂ = χm(H × n̂) = χmnI φ̂

is in the same direction as I , in the former case (χm > 0), and opposite in the
latter (χm < 0).

You might suppose that linear media escape the defect in the parallel between
B and H: since M and H are now proportional to B, does it not follow that
their divergence, like B’s, must always vanish? Unfortunately, it does not;10 at
the boundary between two materials of different permeability, the divergence of
M can actually be infinite. For instance, at the end of a cylinder of linear para-
magnetic material, M is zero on one side but not on the other. For the “Gaussian
pillbox” shown in Fig. 6.23,

∮
M · da �= 0, and hence, by the divergence theorem,

∇ · M cannot vanish everywhere within it.

10Formally, ∇ · H = ∇ ·
(

1
μ

B
)

= 1
μ
∇ · B + B · ∇

(
1
μ

)
= B · ∇

(
1
μ

)
, so H is not divergenceless (in

general) at points where μ is changing.
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Incidentally, the volume bound current density in a homogeneous linear mate-
rial is proportional to the free current density:

Jb = ∇ × M = ∇ × (χmH) = χmJ f . (6.33)

In particular, unless free current actually flows through the material, all bound
current will be at the surface.

Problem 6.16 A coaxial cable consists of two very long cylindrical tubes, separated
by linear insulating material of magnetic susceptibility χm . A current I flows down
the inner conductor and returns along the outer one; in each case, the current dis-
tributes itself uniformly over the surface (Fig. 6.24). Find the magnetic field in the
region between the tubes. As a check, calculate the magnetization and the bound
currents, and confirm that (together, of course, with the free currents) they generate
the correct field.

I

I b

a

FIGURE 6.24

Problem 6.17 A current I flows down a long straight wire of radius a. If the wire
is made of linear material (copper, say, or aluminum) with susceptibility χm , and
the current is distributed uniformly, what is the magnetic field a distance s from the
axis? Find all the bound currents. What is the net bound current flowing down the
wire?

Problem 6.18 A sphere of linear magnetic material is placed in an otherwise uni-!
form magnetic field B0. Find the new field inside the sphere. [Hint: See Prob. 6.15
or Prob. 4.23.]

Problem 6.19 On the basis of the naïve model presented in Sect. 6.1.3, estimate
the magnetic susceptibility of a diamagnetic metal such as copper. Compare your
answer with the empirical value in Table 6.1, and comment on any discrepancy.
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6.4.2 Ferromagnetism

In a linear medium, the alignment of atomic dipoles is maintained by a magnetic
field imposed from the outside. Ferromagnets—which are emphatically not lin-
ear11—require no external fields to sustain the magnetization; the alignment is
“frozen in.” Like paramagnetism, ferromagnetism involves the magnetic dipoles
associated with the spins of unpaired electrons. The new feature, which makes fer-
romagnetism so different from paramagnetism, is the interaction between nearby
dipoles: In a ferromagnet, each dipole “likes” to point in the same direction as its
neighbors. The reason for this preference is essentially quantum mechanical, and
I shall not endeavor to explain it here; it is enough to know that the correlation is
so strong as to align virtually 100% of the unpaired electron spins. If you could
somehow magnify a piece of iron and “see” the individual dipoles as tiny arrows,
it would look something like Fig. 6.25, with all the spins pointing the same way.

But if that is true, why isn’t every wrench and nail a powerful magnet? The
answer is that the alignment occurs in relatively small patches, called domains.
Each domain contains billions of dipoles, all lined up (these domains are actually
visible under a microscope, using suitable etching techniques—see Fig. 6.26), but
the domains themselves are randomly oriented. The household wrench contains an
enormous number of domains, and their magnetic fields cancel, so the wrench as
a whole is not magnetized. (Actually, the orientation of domains is not completely
random; within a given crystal, there may be some preferential alignment along
the crystal axes. But there will be just as many domains pointing one way as
the other, so there is still no large-scale magnetization. Moreover, the crystals
themselves are randomly oriented within any sizable chunk of metal.)

How, then, would you produce a permanent magnet, such as they sell in
toy stores? If you put a piece of iron into a strong magnetic field, the torque
N = m × B tends to align the dipoles parallel to the field. Since they like to stay
parallel to their neighbors, most of the dipoles will resist this torque. However,

FIGURE 6.25

11In this sense, it is misleading to speak of the susceptibility or permeability of a ferromagnet. The
terms are used for such materials, but they refer to the proportionality factor between a differential
increase in H and the resulting differential change in M (or B); moreover, they are not constants, but
functions of H.
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Ferromagnetic domains. (Photo courtesy of R. W. DeBlois)

FIGURE 6.26

at the boundary between two domains, there are competing neighbors, and the
torque will throw its weight on the side of the domain most nearly parallel to the
field; this domain will win some converts, at the expense of the less favorably ori-
ented one. The net effect of the magnetic field, then, is to move the domain bound-
aries. Domains parallel to the field grow, and the others shrink. If the field is strong
enough, one domain takes over entirely, and the iron is said to be saturated.

It turns out that this process (the shifting of domain boundaries in response to
an external field) is not entirely reversible: When the field is switched off, there
will be some return to randomly oriented domains, but it is far from complete—
there remains a preponderance of domains in the original direction. You now have
a permanent magnet.

A simple way to accomplish this, in practice, is to wrap a coil of wire around
the object to be magnetized (Fig. 6.27). Run a current I through the coil; this pro-
vides the external magnetic field (pointing to the left in the diagram). As you in-
crease the current, the field increases, the domain boundaries move, and the mag-
netization grows. Eventually, you reach the saturation point, with all the dipoles
aligned, and a further increase in current has no effect on M (Fig. 6.28, point b).

Now suppose you reduce the current. Instead of retracing the path back to
M = 0, there is only a partial return to randomly oriented domains; M decreases,
but even with the current off there is some residual magnetization (point c). The
wrench is now a permanent magnet. If you want to eliminate the remaining mag-
netization, you’ll have to run a current backwards through the coil (a negative I ).
Now the external field points to the right, and as you increase I (negatively),
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I

FIGURE 6.27

M drops down to zero (point d). If you turn I still higher, you soon reach sat-
uration in the other direction—all the dipoles now pointing to the right (e). At
this stage, switching off the current will leave the wrench with a permanent mag-
netization to the right (point f ). To complete the story, turn I on again in the
positive sense: M returns to zero (point g), and eventually to the forward satura-
tion point (b).

The path we have traced out is called a hysteresis loop. Notice that the mag-
netization of the wrench depends not only on the applied field (that is, on I ), but
also on its previous magnetic “history.”12 For instance, at three different times in
our experiment the current was zero (a, c, and f ), yet the magnetization was dif-
ferent for each of them. Actually, it is customary to draw hysteresis loops as plots
of B against H , rather than M against I . (If our coil is approximated by a long
solenoid, with n turns per unit length, then H = nI , so H and I are proportional.
Meanwhile, B = μ0(H + M), but in practice M is huge compared to H , so to all
intents and purposes B is proportional to M.)

To make the units consistent (teslas), I have plotted (μ0 H ) horizontally
(Fig. 6.29); notice, however, that the vertical scale is 104 times greater than the
horizontal one. Roughly speaking, μ0H is the field our coil would have produced
in the absence of any iron; B is what we actually got, and compared to μ0H, it is
gigantic. A little current goes a long way, when you have ferromagnetic materials

I

M

e

a g

c b

d

f

(Permanent
Magnet)

(Saturation)

(Permanent
Magnet)(Saturation)

FIGURE 6.28

12Etymologically, the word hysteresis has nothing to do with the word history—nor with the word
hysteria. It derives from a Greek verb meaning “lag behind.”
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around. That’s why anyone who wants to make a powerful electromagnet will
wrap the coil around an iron core. It doesn’t take much of an external field to
move the domain boundaries, and when you do that, you have all the dipoles in
the iron working with you.

One final point about ferromagnetism: It all follows, remember, from the
fact that the dipoles within a given domain line up parallel to one another. Ran-
dom thermal motions compete with this ordering, but as long as the temperature
doesn’t get too high, they cannot budge the dipoles out of line. It’s not surprising,
though, that very high temperatures do destroy the alignment. What is surprising
is that this occurs at a precise temperature (770◦ C, for iron). Below this temper-
ature (called the Curie point), iron is ferromagnetic; above, it is paramagnetic.
The Curie point is rather like the boiling point or the freezing point in that there is
no gradual transition from ferro- to para-magnetic behavior, any more than there
is between water and ice. These abrupt changes in the properties of a substance,
occurring at sharply defined temperatures, are known in statistical mechanics as
phase transitions.

Problem 6.20 How would you go about demagnetizing a permanent magnet (such
as the wrench we have been discussing, at point c in the hysteresis loop)? That is,
how could you restore it to its original state, with M = 0 at I = 0?

Problem 6.21

(a) Show that the energy of a magnetic dipole in a magnetic field B is

U = −m · B. (6.34)

[Assume that the magnitude of the dipole moment is fixed, and all you have
to do is move it into place and rotate it into its final orientation. The energy re-
quired to keep the current flowing is a different problem, which we will confront
in Chapter 7.] Compare Eq. 4.6.
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m1 m2
rθ1 θ2

FIGURE 6.30

(b) Show that the interaction energy of two magnetic dipoles separated by a dis-
placement r is given by

U = μ0

4π

1

r 3
[m1 · m2 − 3(m1 · r̂)(m2 · r̂)]. (6.35)

Compare Eq. 4.7.

(c) Express your answer to (b) in terms of the angles θ1 and θ2 in Fig. 6.30, and use
the result to find the stable configuration two dipoles would adopt if held a fixed
distance apart, but left free to rotate.

(d) Suppose you had a large collection of compass needles, mounted on pins at
regular intervals along a straight line. How would they point (assuming the
earth’s magnetic field can be neglected)? [A rectangular array of compass nee-
dles aligns itself spontaneously, and this is sometimes used as a demonstration
of “ferromagnetic” behavior on a large scale. It’s a bit of a fraud, however, since
the mechanism here is purely classical, and much weaker than the quantum me-
chanical exchange forces that are actually responsible for ferromagnetism.13]

More Problems on Chapter 6

Problem 6.22 In Prob. 6.4, you calculated the force on a dipole by “brute force.”!
Here’s a more elegant approach. First write B(r) as a Taylor expansion about the
center of the loop:

B(r) ∼= B(r0) + [(r − r0) · ∇0]B(r0),

where r0 is the position of the dipole and ∇0 denotes differentiation with respect to
r0. Put this into the Lorentz force law (Eq. 5.16) to obtain

F = I
∮

dl × [(r · ∇0)B(r0)].

Or, numbering the Cartesian coordinates from 1 to 3:

Fi = I
3∑

j,k,l=1

εi jk

{∮
rl dl j

} [∇0l Bk(r0)
]
,

where εi jk is the Levi-Civita symbol (+1 if i jk = 123, 231, or 312; −1 if i jk =
132, 213, or 321; 0 otherwise), in terms of which the cross-product can be written
(A × B)i = ∑3

j,k=1 εi jk A j Bk . Use Eq. 1.108 to evaluate the integral. Note that

3∑
j=1

εi jkεl jm = δilδkm − δimδkl ,

where δi j is the Kronecker delta (Prob. 3.52).

13For an intriguing exception, see B. Parks, Am. J. Phys. 74, 351 (2006), Section II.
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FIGURE 6.31

Problem 6.23 A familiar toy consists of donut-shaped permanent magnets (magne-
tization parallel to the axis), which slide frictionlessly on a vertical rod (Fig. 6.31).
Treat the magnets as dipoles, with mass md and dipole moment m.

(a) If you put two back-to-back magnets on the rod, the upper one will “float”—the
magnetic force upward balancing the gravitational force downward. At what
height (z) does it float?

(b) If you now add a third magnet (parallel to the bottom one), what is the ratio of
the two heights? (Determine the actual number, to three significant digits.)
[Answer: (a) [3μ0m2/2πmd g]1/4; (b) 0.8501]

Problem 6.24 Imagine two charged magnetic dipoles (charge q, dipole moment m),
constrained to move on the z axis (same as Problem 6.23(a), but without gravity).
Electrically they repel, but magnetically (if both m’s point in the z direction) they
attract.

(a) Find the equilibrium separation distance.

(b) What is the equilibrium separation for two electrons in this orientation.
[Answer: 4.72 × 10−13 m.]

(c) Does there exist, then, a stable bound state of two electrons?

Problem 6.25 Notice the following parallel:
{ ∇ · D = 0, ∇ × E = 0, ε0E = D − P, (no free charge);

∇ · B = 0, ∇ × H = 0, μ0H = B − μ0M, (no free current).

Thus, the transcription D → B, E → H, P → μ0M, ε0 → μ0 turns an electrostatic
problem into an analogous magnetostatic one. Use this, together with your knowl-
edge of the electrostatic results, to rederive

(a) the magnetic field inside a uniformly magnetized sphere (Eq. 6.16);

(b) the magnetic field inside a sphere of linear magnetic material in an otherwise
uniform magnetic field (Prob. 6.18);
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(c) the average magnetic field over a sphere, due to steady currents within the
sphere (Eq. 5.93).

Problem 6.26 Compare Eqs. 2.15, 4.9, and 6.11. Notice that if ρ, P, and M are
uniform, the same integral is involved in all three:

∫ r̂
r2

dτ ′.

Therefore, if you happen to know the electric field of a uniformly charged object,
you can immediately write down the scalar potential of a uniformly polarized ob-
ject, and the vector potential of a uniformly magnetized object, of the same shape.
Use this observation to obtain V inside and outside a uniformly polarized sphere
(Ex. 4.2), and A inside and outside a uniformly magnetized sphere (Ex. 6.1).

μ2

μ1

B2

B1θ1

θ2

FIGURE 6.32

Problem 6.27 At the interface between one linear magnetic material and another,
the magnetic field lines bend (Fig. 6.32). Show that tan θ2/ tan θ1 = μ2/μ1, assum-
ing there is no free current at the boundary. Compare Eq. 4.68.

Problem 6.28 A magnetic dipole m is imbedded at the center of a sphere (radius!
R) of linear magnetic material (permeability μ). Show that the magnetic field inside
the sphere (0 < r ≤ R) is

μ

4π

{
1

r 3
[3(m · r̂)r̂ − m] + 2(μ0 − μ)m

(2μ0 + μ)R3

}
.

What is the field outside the sphere?

Problem 6.29 You are asked to referee a grant application, which proposes to deter-
mine whether the magnetization of iron is due to “Ampère” dipoles (current loops)
or “Gilbert” dipoles (separated magnetic monopoles). The experiment will involve
a cylinder of iron (radius R and length L = 10R), uniformly magnetized along the
direction of its axis. If the dipoles are Ampère-type, the magnetization is equivalent
to a surface bound current Kb = M φ̂; if they are Gilbert-type, the magnetization is
equivalent to surface monopole densities σb = ±M at the two ends. Unfortunately,
these two configurations produce identical magnetic fields, at exterior points. How-
ever, the interior fields are radically different—in the first case B is in the same
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general direction as M, whereas in the second it is roughly opposite to M. The ap-
plicant proposes to measure this internal field by carving out a small cavity and
finding the torque on a tiny compass needle placed inside.

Assuming that the obvious technical difficulties can be overcome, and that the
question itself is worthy of study, would you advise funding this experiment? If so,
what shape cavity would you recommend? If not, what is wrong with the proposal?
[Hint: Refer to Probs. 4.11, 4.16, 6.9, and 6.13.]


